

Bridging between Sensor Measurements and Symbolic Ontologies through Conceptual Spaces

- SemSensWeb'09 Workshop, ESWC 2009, Heraklion, June 01, 2009 -

Stefan Dietze, John Domingue,

Knowledge Media Institute, The Open University, UK

- Background & Motivation
- Conceptual Spaces (CS)
- Utilising CS to map between symbolic Ontologies and Measurements
- Application
- Conclusions

Introduction Ontology vs Sensor Data

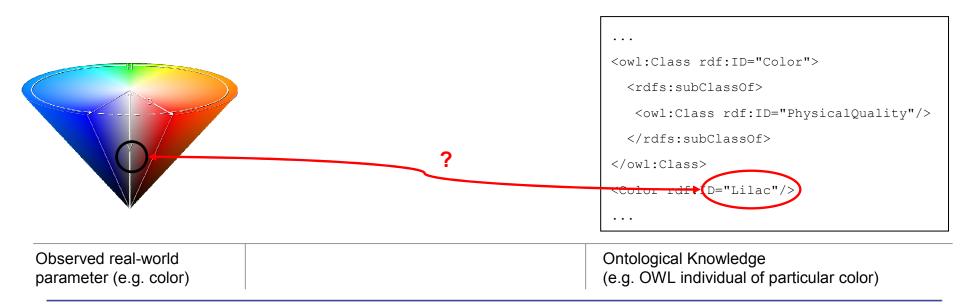
Ontology:

- Formal symbolic specification of shared conceptualisation
- Defined as tuple of concepts C, instances I, properties P, relations R and axioms A

$$O = \{ (C, I, P, R, A) \}$$

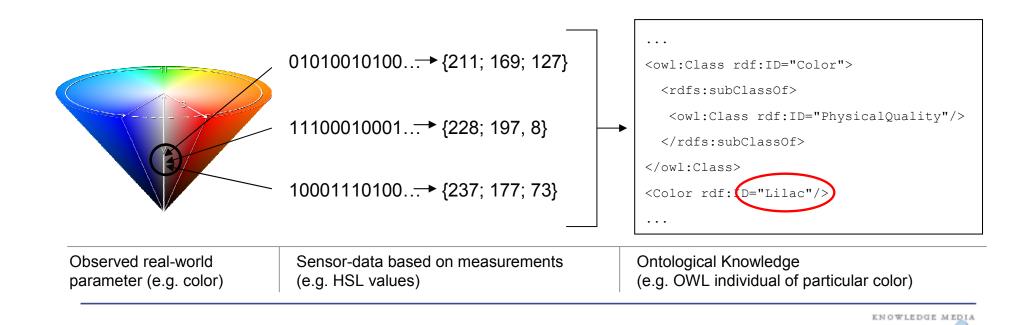
Sensor data:

- Usually consists of binary data representing measurements...
- ...describing observations of real-world phenomena
- Concurrent standards to represent sensor models and measurements (e.g. OpenGIS SensorML,O&M Encoding Standard)

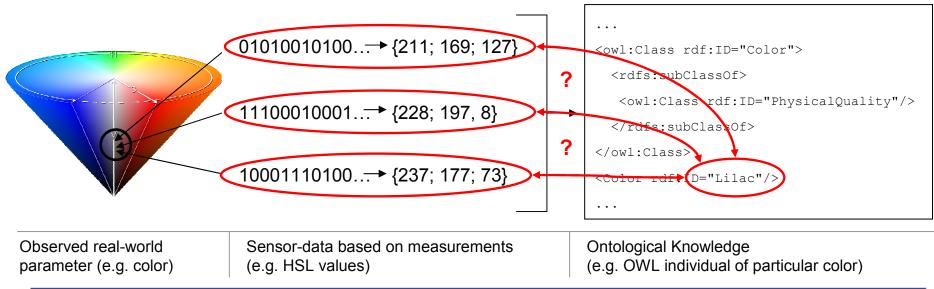


Ontology vs Sensor Data Issues

Symbol grounding issue – ontological entities lack grounding in real-world / cognitive dimensions



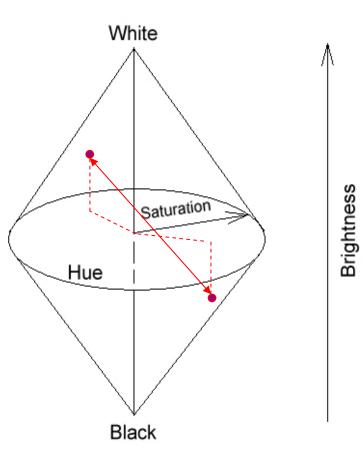
Ontology vs Sensor Data Issues


- Symbol grounding issue ontological entities lack grounding in real-world / cognitive dimensions
- Multiplicity of mappings potentially infinite amount of measurements needs to be mapped to finite set of symbols

Ontology vs Sensor Data Issues

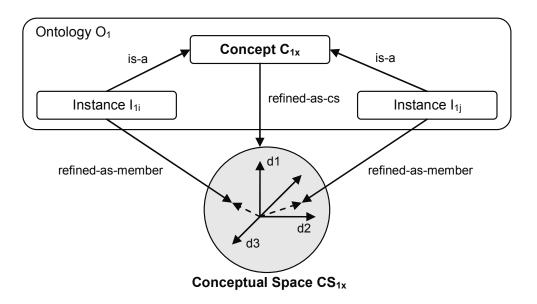
- Symbol grounding issue ontological entities lack grounding in real-world / cognitive dimensions
- Multiplicity of mappings potentially infinite amount of measurements needs to be mapped to finite set of symbols
- Lack of implicit similarity symbolic ontologies lack meaningfulness to implicitly infer on similarities

Ontology vs Sensor Data Issues


- Symbol grounding issue ontological entities lack grounding in real-world / cognitive dimensions
- Multiplicity of mappings potentially infinite amount of measurements needs to be mapped to finite set of symbols
- Lack of implicit similarity symbolic ontologies lack meaningfulness to implicitly infer on similarities
- Representations needed which enable:
 - to bridge between **measurement-based sensor data** and **ontological symbols**
 - to map infinite variety of real-world observations to finite set of symbols

Spatial Representations Conceptual Spaces

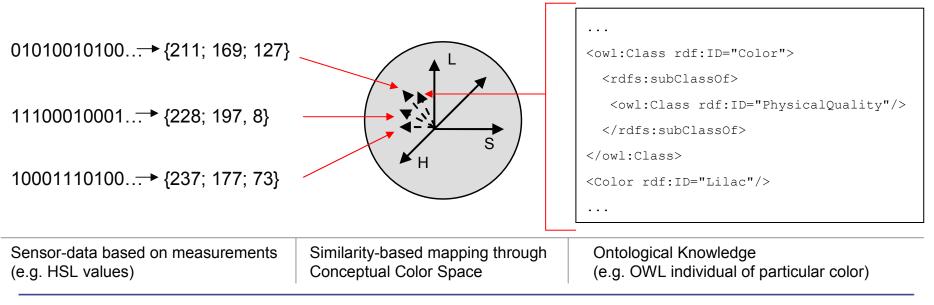
- Exploit measurements for similarity computation
- Multidimensional geometrical vector spaces
- Entities represented in terms of (metric-based) cognitive quality dimensions... (e.g. colors through dimensions hue, saturation, brightness)
- Instances (e.g. 2 colors) => points (vectors) in the CS
- Semantic similarity between instances => spatial distance



Two-fold Approach Refining Ontologies through CS

CS groundings for ontological concepts (1/2):

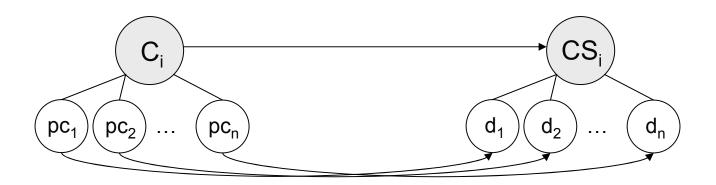
- Refining ontologies through multiple CS
- Concept C ontology O => Conceptual Space CS
- Instance I of C => member M (vector) in CS...



Two-fold Approach Refining Ontologies through CS

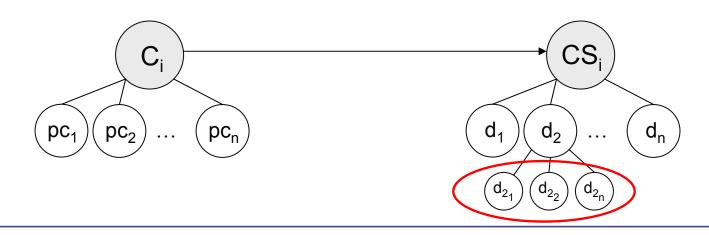
CS groundings for ontological concepts (2/2):

- Similarity-computation between sensor-based measurements and ontological instances
- Common agreement at schema (i.e. CS) level...
- ... facilitated through standards for sensor measurement models



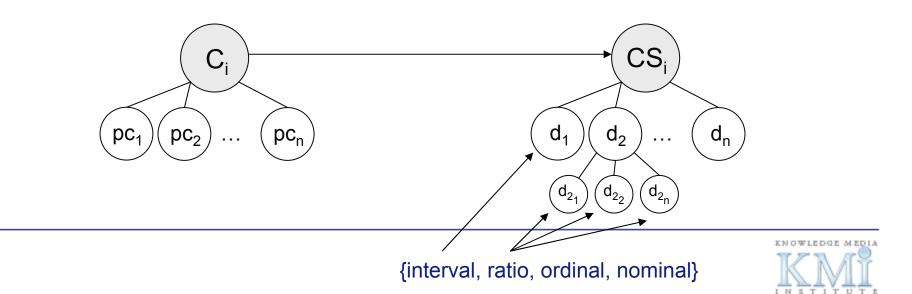
Two-fold Approach CS Formalisation

- Representation of concept properties pc_j of C_i as dimensions d_j of CS_i
- Assignment of measurement scales to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of all instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS



Two-fold Approach CS Formalisation

- Representation of concept properties pc_j of C_i as dimensions d_j of CS_i
- Assignment of measurement scales to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of all instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS



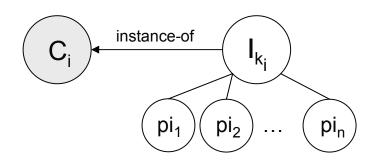
Two-fold Approach CS Formalisation

- Representation of concept properties *pc_j* of *C_i* as dimensions *d_j* of *CS_i*
- Assignment of measurement scales to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS

Two-fold Approach CS Formalisation

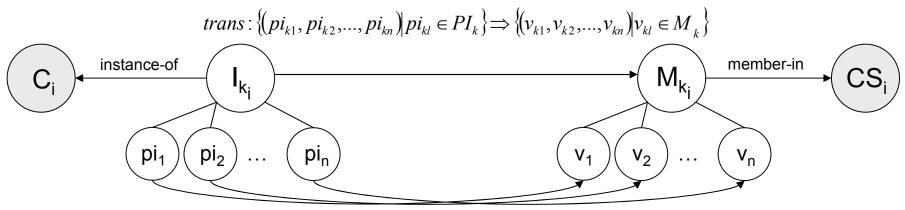
- Representation of concept properties pc_j of C_i as dimensions d_j of CS_i
- Assignment of measurement scales to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS

$$trans: \{ (pc_{i1}, pc_{i2}, ..., pc_{in}) | pc_{ij} \in PC_i \} \Rightarrow \{ (p_{i1}d_{i1}, p_{i2}d_{i2}, ..., p_{in}d_{in}) | d_{ij} \in CS_i, p_{ij} \in P \}$$



Two-fold Approach CS Formalisation

- Representation of concept properties *pc_j* of *C_i* as dimensions *d_j* of *CS_i*
- Assignment of measurement scales to each quality dimension d_j
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS



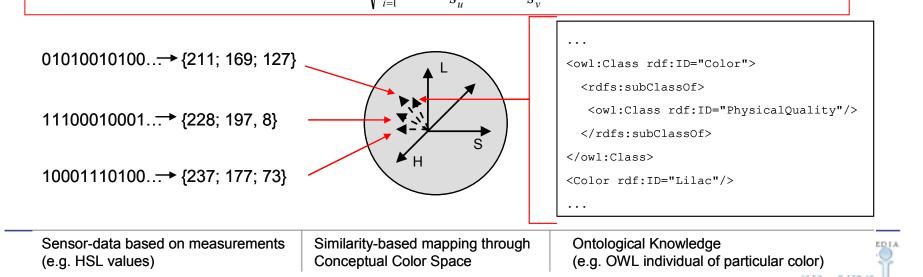
Two-fold Approach CS Formalisation

Formal ontology allowing to refine ontologies through CS:

- Representation of concept properties pc_j of C_i as dimensions d_j of CS_i
- Assignment of measurement scales to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of instances I_{k_i} of C_i as members M_{k_i} in CS_i
- Similarity between sensor measurements and symbolic instance = Euclidean distance in CS

e.g. M_{k_i} ={(20.649, 98, 0, 7.9894)}

he Open Unive

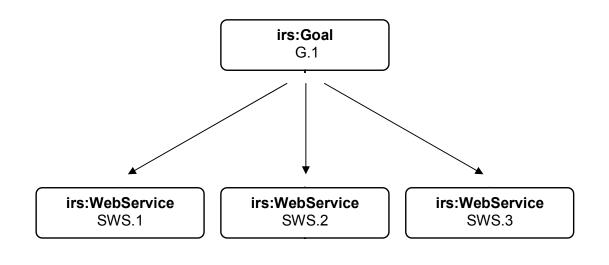


Two-fold Approach CS Formalisation

Formal ontology allowing to refine ontologies through CS:

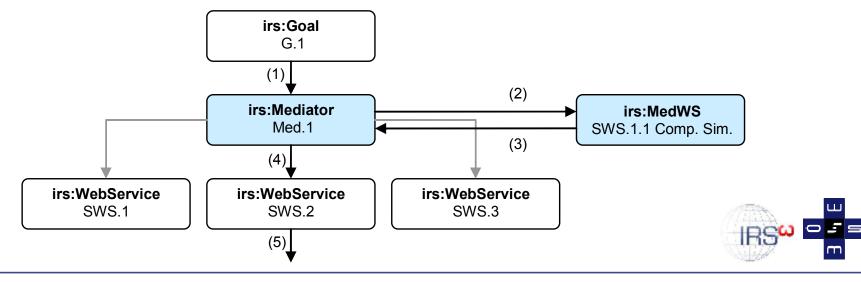
- Representation of concept properties pc_j of C_i as dimensions d_j of CS_i
- Assignment of measurement scale to each quality dimension d_i
- Assignment of prominence values p_i to each quality dimension d_i
- Representation of instances I_{k_i} of C_i as members M_{k_i} in CS_i

• Similarity between sensor measurements and symbolic instance = Euclidean distance in CS $dist(u,v) = \sqrt{\sum_{i=1}^{n} p_i((\frac{u_i - \overline{u}}{s_u}) - (\frac{v_i - \overline{v}}{s_v}))^2}$



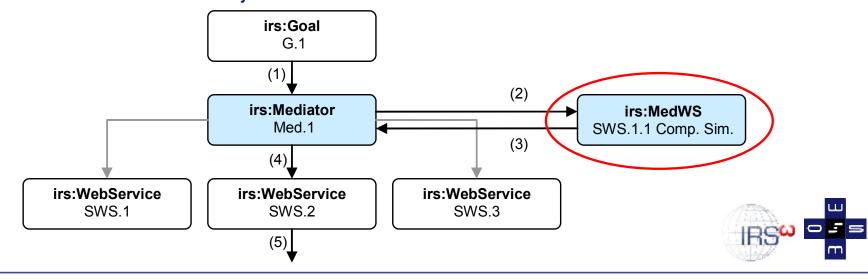
Application Measurement-based Service Selection

- Matchmaking of Semantic Web Services (SWS) based on context measurements
- Uses SWS reasoning environment IRS-III
- Request: "irs:Goal" context defined as set of measurements
- Matchmaking between request and x associated SWS (SWS₁...SWS_x)
- Implemented through mediation Web service based on similarity-computation



Application Measurement-based Service Selection

- Matchmaking of Semantic Web Services (SWS) based on context measurements
- Uses SWS reasoning environment IRS-III
- Request: "irs:Goal" context defined as set of measurements
- Matchmaking between request and x associated SWS (SWS₁...SWS_x)
- Implemented through mediation Web service based on similarity-computation

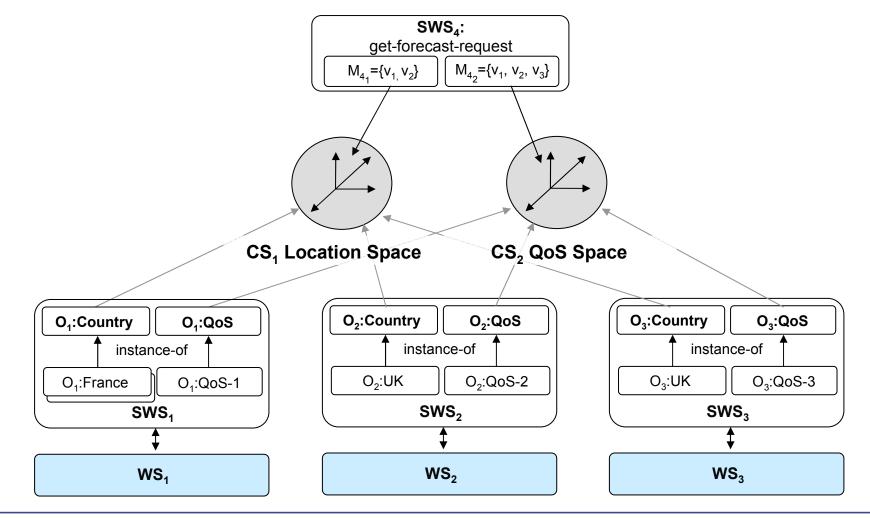


Application Measurement-based Service Selection

• MedWS SWS_{1.1} computes x similarity values with Sim(G₁,SWS_j) defined as reciprocal of mean value of individual member distances: $\left(\sum_{k=1}^{n} (dist_{k})\right)^{-1}$

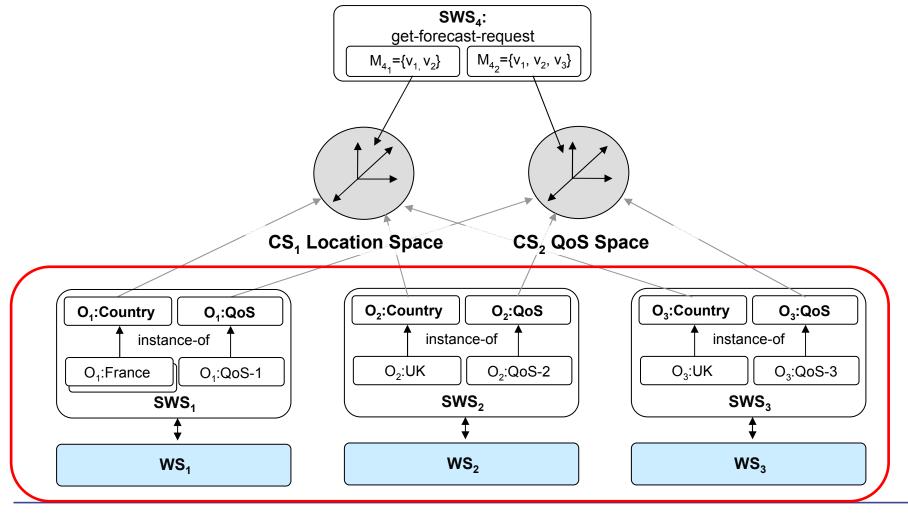
$$Sim(G_i, SWS_j) = \left(\overline{Dist(G_i, SWS_j)}\right)^{-1} = \left|\frac{\sum_{k=1}^{n} (dist_k)}{n}\right|^{-1}$$

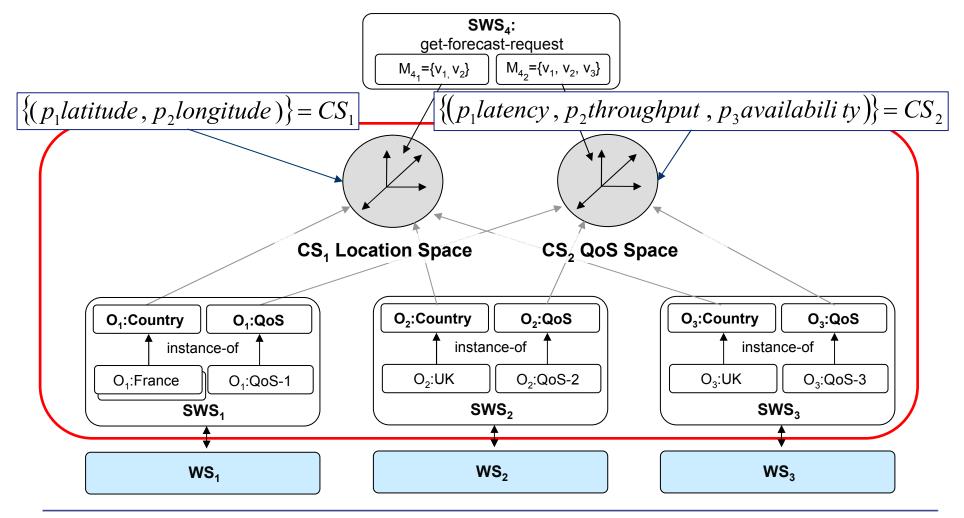
 dist_k = distance between one particular vector (member) v_i describing context of G₁ and one member of SWS_i



he Open Unive

- Automated discovery of distributed weather forecast services
- Each service targets distinct locations and Quality of Service (QoS) (represented via SWS capability description)
- Symbolic ontologies (SWS) extended with CS-based grounding (service capability parameter - locations, QoS - represented as members in CS)
- Requests (IRS-III goals) use measurements to describe context (e.g. the current location and desired QoS)
- Similarity-based service selection for a given request based on MedWS





- SWS capabilities described through conjunction of instances
- Instances refined through vectors (members)

		Assumption $Ass_{SWSi} = (L_{1SWSi} \cup L_{2SWSi} \cup \cup L_{nSWSi}) \cup (Q_{1SWSi} \cup Q_{2SWSi} \cup \cup Q_{mSWSi})$			
		Members L_i in CS ₁ (locations)	Members C_j in CS_2 (QoS)		
$\left(\right)$	SWS ₁	L _{1(SWS1)} ={(46.227644, 2.213755)} L _{2(SWS1)} ={(40.463667, -3.74922)}	Q _{1(SWS1)} ={(155, 2, 91)}		
	SWS ₂	L _{1(SWS2)} ={(55.378051, -3.435973)}	Q _{1(SWS2)} ={(15, 50, 98)}		
U	SWS ₃	L _{1(SWS3)} ={(55.378048, -3.435963)}	Q _{1(SWS3)} ={(78, 5, 95)}		
	SWS_4	L _{1(SWS4} ={(55.378048, -3.435963)}	Q _{1(SWS4)} ={(0,100,100)}		

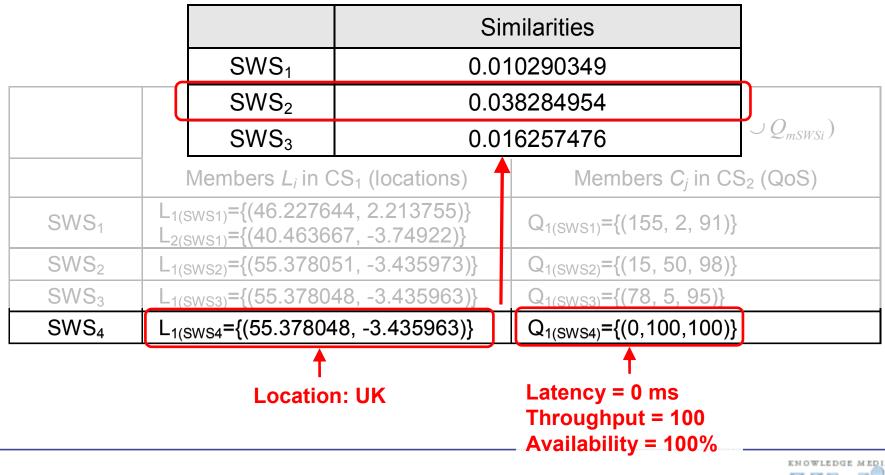
	Locations: F	rance, Spain	Latency = Throughp Availabilit	ut = 2
	$Ass_{SWSi} = (L_{1SW}$		mption _{SWSi}) \cup (Q_{1SWSi}	$\cup Q_{2SWSi} \cup \cup Q_{mSWSi})$
	Members <i>L_i</i> in	CS ₁ (locations)	Mem	ers <i>C_i</i> in CS ₂ (QoS)
SWS1	L _{1(SWS1)} ={(46.227644, 2.213755)} L _{2(SWS1)} ={(40.463667, -3.74922)}		Q _{1(SWS1)} ={(155, 2, 91)}
SWS ₂	L _{1(SWS2)} ={(55.378)	051, -3.435973)}	Q _{1(SWS2)} ={(15, 50, 98)}
SWS ₃	L _{1(SWS3)} ={(55.378)	048, -3.435963)}	Q _{1(SWS3)} ={(78, 5, 95)}
SWS ₄	L _{1(SWS4} ={(55.3780)48, -3.435963)}	Q _{1(SWS4)} ={(0,100,100)}

The Open University **Measurement-based Service Selection** Prototype Application SWS₄: get-forecast-request $M_{4_2} = \{v_1, v_2, v_3\}$ $M_{4_1} = \{v_{1,} v_2\}$ **CS₁ Location Space** CS₂ QoS Space O₂:Country O₃:Country O₁:Country O₂:QoS O₃:QoS O₁:QoS instance-of instance-of instance-of O₂:QoS-2 O₃:UK O₂:UK O₃:QoS-3 O₁:France O₁:QoS-1 SWS₁ SWS₂ SWS₃

WS₂

WS₁

WS₃



		$\begin{array}{l} \text{mption} \\ \\ P_{WSi} \end{array}) \cup (Q_{1SWSi} \cup Q_{2SWSi} \cup \cup Q_{mSWSi} \end{array}) \end{array}$
	Members L_i in CS ₁ (locations)	Members C_j in CS_2 (QoS)
SWS ₁	$\begin{array}{c c} L_{1(SWS1)} = \{(46.227644, 2.213755)\} \\ L_{2(SWS1)} = \{(40.463667, -3.74922)\} \end{array}$	Q _{1(SWS1)} ={(155, 2, 91)}
SWS ₂	L _{1(SWS2)} ={(55.378051, -3.435973)}	Q _{1(SWS2)} ={(15, 50, 98)}
SWS_3	L _{1(SWS3)} ={(55.378048, -3.435963)}	Q _{1(SWS3)} ={(78, 5, 95)}
SWS ₄	L _{1(SWS4} ={(55.378048, -3.435963)}	Q _{1(SWS4)} ={(0,100,100)}
	Location: UK	Latency = 0 ms Throughput = 100 Availability = 100%
		KNOWLEDGE MEL

		S	imilarities	
	SWS ₁	0.0	10290349	
	SWS ₂	0.0	38284954	
	SWS ₃	0.0	16257476	$\cup Q_{mSWSi})$
	Members <i>L</i> _i i	n CS ₁ (locations)	Members <i>C_j</i> in CS	S ₂ (QoS)
SWS ₁		7644, 2.213755)} 3667, -3.74922)}	Q _{1(SWS1)} ={(155, 2, 91)}	
SWS ₂	L _{1(SWS2)} ={(55.37	8051, -3.435973)}	Q _{1(SWS2)} ={(15, 50, 98)}	
SWS ₃	L _{1(SWS3)} ={(55.37	8)48, -3.435963)}	Q _{1(SWS3)} ={(1 8, 5, 95)}	
SWS ₄	L _{1(SWS4} ={(55.378	3048, -3.435963)}	Q _{1(SWS4)} ={(0,100,100)}	
	Locat	ion: UK	Latency = 15 ms Throughput = 50 Availability = 98%	

Conclusions Discussion and Summary

Some issues:

he Open Unive

- Additional representational effort
- => CS might just shift symbol grounding issue (i.e. dimensions lack grounding and are ambiguous)
- CS dimensions need to represent actual sensor measurements
- Ontologies/sensor data need to share common schema (CS)

Conclusions Discussion and Summary

Some issues:

OpenUniversit

- Additional representational effort
- => CS might just shift symbol grounding issue (i.e. dimensions lack grounding and are ambiguous)
- CS dimensions need to represent actual sensor measurements
- Ontologies/sensor data need to share common schema (CS)
- ..., however:
 - Similarity computation between symbolic instances and sensor measurements
 - Provides means to map infinite variety of potential sensor measurements to finite set of symbolic instances
 - Alignment of distinct sensor models through alignment of CS

E-mail: <u>s.dietze@open.ac.uk</u> Web: <u>http://people.kmi.open.ac.uk/dietze</u>

