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Ontology:

� Formal symbolic specification of shared conceptualisation

� Defined as tuple of concepts C, instances I, properties P, relations R and

axioms A

Sensor data:

� Usually consists of binary data representing measurements…

� …describing observations of real-world phenomena

� Concurrent standards to represent sensor models and measurements

(e.g. OpenGIS SensorML,O&M Encoding Standard) 

Introduction 

Ontology vs Sensor Data
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� Symbol grounding issue – ontological entities lack grounding in real-world / cognitive 

dimensions  

� Multiplicity of mappings – potentially infinite amount of measurements needs to be 

mapped to finite set of symbols

� Lack of implicit similarity – symbolic ontologies lack meaningfulness to implicitly infer on 

similarities

� Representations needed which are able: 

� to bridge between measurement-based sensor data and ontological symbols, 

� to map infinite variety of real-world observations to finite set of symbols.  

Ontology vs Sensor Data

Issues

...
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Ontology vs Sensor Data

Issues

� Symbol grounding issue – ontological entities lack grounding in real-world / cognitive 

dimensions  

� Multiplicity of mappings – potentially infinite amount of measurements needs to be 

mapped to finite set of symbols

� Lack of implicit similarity – symbolic ontologies lack meaningfulness to implicitly infer on 

similarities

� Representations needed which enable: 

� to bridge between measurement-based sensor data and ontological symbols

� to map infinite variety of real-world observations to finite set of symbols



Spatial Representations

Conceptual Spaces

� Exploit measurements for similarity computation

� Multidimensional geometrical vector spaces

� Entities represented in terms of (metric-based) 

cognitive quality dimensions... 

(e.g. colors through dimensions hue, saturation, 

brightness)

� Instances (e.g. 2 colors) => points (vectors) in the

CS

� Semantic similarity between instances => spatial

distance



CS groundings for ontological concepts (1/2):

� Refining ontologies through multiple CS

� Concept C ontology O => Conceptual Space CS

� Instance I of C => member M (vector) in CS...

Two-fold Approach

Refining Ontologies through CS

 

Instance I1j Instance I1i 

Concept C1x 
is-a 

refined-as-cs 

refined-as-member refined-as-member 
d1 

d2 

d3 

is-a 

Ontology O1 

Conceptual Space CS1x 



CS groundings for ontological concepts (2/2):

� Similarity-computation between sensor-based measurements and ontological

instances

� Common agreement at schema (i.e. CS) level…

� … facilitated through standards for sensor measurement models

Two-fold Approach

Refining Ontologies through CS

 L 
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Formal ontology allowing to refine ontologies through CS:

� Representation of concept properties pcj of Ci as dimensions dj of CSi

� Assignment of measurement scales to each quality dimension dj

� Assignment of prominence values pj to each quality dimension dj

� Representation of all instances Iki of Ci as members Mki in CSi

� Similarity between sensor measurements and symbolic instance = Euclidean 

distance in CS

Two-fold Approach

CS Formalisation

Ci

pc1 …pc2 pcn d1 …d2 dn

CSi
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Formal ontology allowing to refine ontologies through CS:
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Formal ontology allowing to refine ontologies through CS:

� Representation of concept properties pcj of Ci as dimensions dj of CSi

� Assignment of measurement scales to each quality dimension dj

� Assignment of prominence values pj to each quality dimension dj

� Representation of instances Iki of Ci as members Mki in CSi
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Formal ontology allowing to refine ontologies through CS:

� Representation of concept properties pcj of Ci as dimensions dj of CSi

� Assignment of measurement scale to each quality dimension dj

� Assignment of prominence values pj to each quality dimension dj

� Representation of instances Iki of Ci as members Mki in CSi

� Similarity between sensor measurements and symbolic instance = Euclidean 

distance in CS

Two-fold Approach
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irs:Mediator 
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� Matchmaking of Semantic Web Services (SWS) based on context measurements

� Uses SWS reasoning environment IRS-III

� Request: “irs:Goal” - context defined as set of measurements

� Matchmaking between request and x associated SWS (SWS1..SWSx)

� Implemented through mediation Web service based on similarity-computation

Application

Measurement-based Service Selection
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� MedWS SWS1.1 computes x similarity values with Sim(G1,SWSj) defined as reciprocal of 

mean value of individual member distances:

� distk = distance between one particular vector (member) vi describing context of G1

and one member of SWSj
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� Automated discovery of distributed weather forecast services

� Each service targets distinct locations and Quality of Service (QoS)

(represented via SWS capability description)

� Symbolic ontologies (SWS) extended with CS-based grounding

(service capability parameter - locations, QoS - represented as members in CS)

� Requests (IRS-III goals) use measurements to describe context

(e.g. the current location and desired QoS) 

� Similarity-based service selection for a given request based on MedWS

Measurement-based Service Selection

Prototype Application
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Assumption

)..()..( 2121 mSWSiSWSiSWSinSWSiSWSiSWSiSWSi QQQLLLAss ∪∪∪∪∪∪∪=  

 Members Li in CS1 (locations) Members Cj in CS2 (QoS) 

SWS1 
L1(SWS1)={(46.227644, 2.213755)} 
L2(SWS1)={(40.463667, -3.74922)} 

Q1(SWS1)={(155, 2, 91)} 

SWS2 L1(SWS2)={(55.378051, -3.435973)} Q1(SWS2)={(15, 50, 98)} 

SWS3 L1(SWS3)={(55.378048, -3.435963)} Q1(SWS3)={(78, 5, 95)} 

SWS4 L1(SWS4={(55.378048, -3.435963)} Q1(SWS4)={(0,100,100)} 

 

� SWS capabilities described through conjunction of instances

� Instances refined through vectors (members)

Measurement-based Service Selection
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Locations: France, Spain

Latency = 155 ms

Throughput = 2 

Availability = 91% 

Measurement-based Service Selection

Prototype Application
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Location: UK Latency = 0 ms

Throughput = 100

Availability = 100% 
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Location: UK Latency = 15 ms 

Throughput = 50 
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Measurement-based Service Selection
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Some issues:

� Additional representational effort

� => CS might just shift symbol grounding issue

(i.e. dimensions lack grounding and are ambiguous)

� CS dimensions need to represent actual sensor measurements

� Ontologies/sensor data need to share common schema (CS)

Conclusions 

Discussion and Summary



Some issues:

� Additional representational effort

� => CS might just shift symbol grounding issue

(i.e. dimensions lack grounding and are ambiguous)

� CS dimensions need to represent actual sensor measurements

� Ontologies/sensor data need to share common schema (CS)

…, however:

� Similarity computation between symbolic instances and sensor measurements

� Provides means to map infinite variety of potential sensor measurements to 

finite set of symbolic instances

� Alignment of distinct sensor models through alignment of CS

Conclusions 

Discussion and Summary



Thank you! 
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