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Abstract. The increasing availability of sensor data through a variety of sensor-driven 

devices raises the need to exploit the data observed by sensors with the help of formally 

specified knowledge representations, such as the ones provided by the Semantic Web. In order 

to facilitate such a Semantic Sensor Web, the challenge is to bridge between symbolic 

knowledge representations and the measured data collected by sensors. In particular, one needs 

to map a given set of arbitrary sensor data to a particular set of symbolic knowledge 

representations, e.g. ontology instances. This task is particularly challenging due to the 

potential infinite variety of possible sensor measurements. Conceptual Spaces (CS) provide a 

means to represent knowledge in geometrical vector spaces in order to enable computation of 

similarities between knowledge entities by means of distance metrics. We propose an ontology 

for CS which allows to refine symbolic concepts as CS and to ground instances to so-called 

prototypical members described by vectors. By computing similarities in terms of spatial 

distances between a given set of sensor measurements and a finite set of prototypical members, 

the most similar instance can be identified. In that, we provide a means to bridge between the 

real-world as observed by sensors and symbolic representations. We also propose an initial 

implementation utilizing our approach for measurement-based Semantic Web Service 

discovery.  

Keywords: Sensor Data, Conceptual Spaces, Semantic Sensor Web, Vector 

Spaces. 

1 Introduction 

Current and next generation wireless communication technologies will encourage 

widespread use of well-connected sensor-driven devices which in fact produce sensor 

data by observing and measuring real-world environments. This has already lead to 

standardisation efforts aiming at facilitating the so-called Sensor Web, such as the 

ones by the Sensor Web Enablement Working Group1 of the Open Geospatial 

Consortium (OGC)2. The increasing availability of sensor data raises the need to 

merge such data with formally specified knowledge representations, such as the ones 
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provided by Semantic Web (SW) standards such as OWL [22] or RDF [23]. However, 

whereas sensor data usually relies on measurements of perceptual characteristics to 

describe real-world phenomena, ontological knowledge presentations represent real-

world entities through symbols. The symbolic approach – i.e. describing symbols by 

using other symbols, without a grounding in perceptual dimensions of the real world – 

leads to the so-called symbol grounding problem [2] and does not entail 

meaningfulness, since meaning requires both the definition of a terminology in terms 

of a logical structure (using symbols) and grounding of symbols to a perceptual level 

[2][13].  

 In that, in order to facilitate the vision of the Semantic Sensor Web (SSW) [18] the 

challenge is to bridge between formal symbolic knowledge representations and the 

measured data collected by sensors by mapping a given set of arbitrary sensor data to 

a particular set of symbolic representations. This task is particularly challenging due 

to the potential infinite variety of possible data sets.  

Conceptual Spaces (CS) [8] follow a theory of describing knowledge in 

geometrical vector spaces which are described by so-called quality dimensions to 

bridge between the perceived and the symbolic world. Representing instances as 

vectors, i.e. members, in a CS provides a means to compute similarities by means of 

spatial distance metrics. However, several issues still have to be considered when 

applying CS. For instance, CS as well as sensor data provide no means to represent 

arbitrary relations between data sets, such as part-of relations.   

In order to overcome the issues introduced above, we propose a two-fold 

knowledge representation approach which extends symbolic knowledge 

representations through a refinement based on CS. This is achieved based on an 

ontology which allows to refine symbolic concepts as CS and to ground instances to 

so-called prototypical members, i.e. prototypical vectors, in the CS. The resulting set 

of CS is formally represented as part of the ontology itself. By computing similarities 

in terms of spatial distances between a given set of sensor measurements and the 

finite set of prototypical members, the most similar instance can be identified. In that, 

our approach provides a means to bridge between the real-world - as measured by 

sensor data - and symbolic representations. 

The remainder of the paper is organized as follows: Section 2 introduces the 

symbol grounding problem in the context of sensor data, while our representational 

approach based on CS is proposed in Section 3. In Section 4, we introduce an 

implementation of our approach based on an existing SWS reference model and we 

introduce first proof-of-concept prototype in Section 5. Finally, we discuss and 

conclude our work in Section 6.  

2 Sensor Data, Symbol Grounding and Spatial Representations 

This section motivates our approach by introducing the so-called symbol grounding 

problem in the context of the SSW and introduces some background knowledge on 

metric-based spatial knowledge representation. 



2.1. Sensor Data and the Symbol Grounding Problem 

Sensor data usually consists of measurements which describe observations of 

phenomena in real-world environments. In order to ensure a certain degree of 

interoperability between heterogeneous sensor data, recent efforts, such as the 

OpenGIS Observations and Measurements Encoding Standard (O&M)3, propose a 

standardized approach to represent observed measurements based on a common XML 

schema. However, in order to provide comprehensive applications capable of 

reasoning in real-time on observed real-world phenomena, i.e. the contextual 

knowledge produced by sensor-driven devices, one needs to bridge between the 

measurements provided by sensors and the formally specified knowledge as, for 

instance, exploited by the Semantic Web [18]. Figure 1 illustrates the desired 

progression from observed real-world phenomena, e.g. a certain color, to 

measurements provided by sensors, e.g. measurements of the hue, saturation and 

lightness (HSL) dimensions, to symbolic knowledge entities such as a particular 

OWL individual representing a specific color.   

...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Observed real-world 

parameter (e.g. color)

Sensor-data based on measurements

(e.g. HSL values)

Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 1. Envisaged progression from real-world observations to ontological representations 

through sensor data.  

However, whereas sensor data usually relies on measurements of perceptual 

characteristics to describe real-world phenomena, ontological knowledge 

presentations represent real-world entities through symbols what leads to a 

representational gap. Hence, several issues have to be taken into account. The 

symbolic approach – i.e. describing symbols by using other symbols, without a 

grounding in the real world or perceptual dimensions what is known as the symbol 

grounding problem [2] – of established SW representation standards, leads to 

ambiguity issues and does not entail meaningfulness, since meaning requires both the 

definition of a terminology in terms of a logical structure (using symbols) and 

grounding of symbols to a perceptual level [2][13]. Moreover, describing the complex 

notion of any specific real-world entity in all its facets through symbolic 

representation languages is a costly task and may never reach semantic 

meaningfulness.  

Hence, in order to facilitate the vision of the SSW, the challenge is, to map a given 

set of sensor observation data to semantic (symbolic) instances which most 

appropriately represent the observed real-world entity within an ontology. In this 
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respect, it is particularly obstructive that a potentially infinite amount of real-world 

phenomena, i.e. measurement data, needs to be mapped to a finite set of knowledge 

representations, e.g. ontological concepts or instances.    

2.2. Exploiting Measurements through spatial Knowledge Representations 

Sensor data usually consists of sets of measurements being observed from the 

surrounding environment. In that, spatially oriented approaches to knowledge 

representation which exploit metrics to describe knowledge entities naturally appear 

to be an obvious choice when attempting to formally represent sensor data. 

Conceptual Spaces (CS) [8] follow a theory of describing entities in terms of their 

quality characteristics similar to natural human cognition in order to bridge between 

the perceived and the symbolic world. CS foresee the representation of concepts as 

multidimensional geometrical Vector Spaces which are defined through sets of quality 

dimensions. Instances are supposed to be represented as vectors, i.e. particular points 

in a CS. For instance, a particular color may be defined as point described by vectors 

measuring HSL or RGB dimensions. Describing instances as points within vector 

spaces where each vector follows a specific metric enables the automatic calculation 

of their semantic similarity by means of distance metrics such as the Euclidean, 

Taxicab or Manhattan distance [11] or the Minkowsky Metric [19]. Hence, semantic 

similarity is implicit information carried within a CS representation what is perceived 

as one of the major contribution of the CS theory. Soft Ontologies (SO) [10] follow a 

similar approach by representing a knowledge domain D through a multi-dimensional 

ontospace A, which is described by its so-called ontodimensions. An item I, i.e. an 

instance, is represented by scaling each dimension to express its impact, presence or 

probability in the case of I. In that, a SO can be perceived as a CS where dimensions 

are measured exclusively on a ratio-scale.  

However, several issues have to be taken into account. For instance, CS as well as 

SO do not provide any notion to represent any arbitrary relations [17], such as part-of 

relations which usually are represented within symbolic knowledge models. 

Moreover, it can be argued, that representing an entire knowledge model through a 

coherent CS might not be feasible, particularly when attempting to maintain the 

meaningfulness of the spatial distance as a similarity measure. In this regard, it is 

even more obstructive that the scope of a dimension is not definable, i.e. a dimension 

always applies to the entire CS/SO [17]. 

3 Grounding Ontological Concepts in Conceptual Spaces  

We propose the grounding of ontologies in multiple CS in order to bridge between the 

measurements provided by sensor-driven devices and symbolic representations of the 

SW.  



3.1. Approach: Spatial Groundings for Symbolic Ontologies 

We claim that CS represent a particularly promising model when being applied to 

individual concepts instead of representing an entire ontology in a single CS. By 

representing instances as so-called prototypical members in CS, arbitrary sensor-data 

can be associated with specific ontology instances in terms of the closest – i.e. the 

most similar – prototypical member representation. 

We propose a two-fold representational approach – combining SW vocabularies 

with corresponding representations based on CS – to enable similarity-based 

matchmaking between a given set of sensor data and ontological representations. In 

that, we consider the representation of a set of n concepts C of an ontology O through 

a set of n Conceptual Spaces CS. Instances of concepts are represented as prototypical 

members in the respective CS. The following Figure 2 depicts this vision: 

 

Instance I1j Instance I1i 

Concept C1x 
is-a 

refined-as-cs 

refined-as-prototypical-member refined-as-prototypical-member 

d1 

d2 

d3 

is-a 

Ontology O1 

Conceptual Space CS1x  

Fig. 2. Representing ontology instances through prototypical members in CS. 

While benefiting from implicit similarity information within a CS, our hybrid 

approach allows overcoming CS-related issues by maintaining the advantages of 

ontology-based knowledge representations and provides a means to ground 

knowledge entities to cognitive dimensions based on measurements. To give a rather 

obvious example, a concept describing the notion of a geospatial location could be 

grounded to a CS described through quality dimensions such as its longitude and 

latitude. In previous work [3][4], we provided more comprehensive examples, even 

for rather qualitative notions, such as particular subjects or learning styles.  

Provided our refinement of ontology concepts as CS and of instances as 

prototypical members, a given set of sensor data which measures the quality 

dimensions of a particular CSi represents a vector v in CSi which can be mapped to an 

appropriate ontology instance I in terms of the spatial distance of the prototypical 

member of I and v.  Figure 3 illustrates the approach based on the color example 

introduced in Section 2.1. While measurements obtained from sensors are well-suited 

to be represented as vectors, i.e. members, in a CS, we facilitate similarity-based 

computation between a given set of sensor data and sets of prototypical members 

which represent ontological instances. For instance, the example in Figure 3 depicts 

the utilisation of a CS based on the HSL dimensions to map between color 

measurements obtained through sensors and prototypical members representing 

certain color instances. Based on the spatial distance between one measured color 



vector and different prototypical members, the closest vector, i.e. the most similar 

one, can be identified. In that, CS provide a means to bridge between observed sensor 

data and symbolic ontological representations. 

 L 
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...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Similarity-based mapping through 

Conceptual Color Space

Sensor-data based on measurements

(e.g. HSL values)
Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 3. Similarity-based mapping between distinct sets of sensor-based color measurements and 

ontological color instances based on a common CS using the HSL dimensions.    

3.2. A formal Ontology to represent Conceptual Spaces 

In order to be able to refine and represent ontological concepts through CS, we 

formalised the CS model into an ontology, currently being represented through 

OCML [12]. Hence, a CS can simply be instantiated in order to represent a particular 

concept.   

Referring to [16][8], we formalise a CS as a vector space defined through quality 

dimensions di of CS. Each dimension is associated with a certain metric scale, e.g. 

ratio, interval or ordinal scale. To reflect the impact of a specific quality dimension on 

the entire CS, we consider a prominence value p for each dimension. Therefore, a CS 

is defined by  

( ){ }ℜ∈∈= iinn

n pCSddpdpdpCS ,,...,, 2211
 

where P is the set of real numbers. However, the usage context, purpose and domain 

of a particular CS strongly influence the ranking of its quality dimensions. This 

clearly supports our position of describing distinct CS explicitly for individual 

concepts. Please note that we do not distinguish between dimensions and domains [8] 

but enable dimensions to be detailed further in terms of subspaces. Hence, a 

dimension within one space may be defined through another CS by using further 

dimensions [16]. In this way, a CS may be composed of several subspaces and 

consequently, the description granularity can be refined gradually. Dimensions may 

be correlated. For instance, when describing an apple the quality dimension 

describing its sugar content may be correlated with the taste dimension. Information 

about correlation is expressed through axioms related to a specific quality dimension 

instance. 

A particular (prototypical) member M – representing a particular instance – in the 

CS is described through valued dimension vectors vi:  

( ){ }MvvvvM in

n ∈= ,...,, 21
 



With respect to [16], we define the semantic similarity between two members of a 

space as a function of the Euclidean distance between the points representing each of 

the members. Hence, with respect to [16], given a CS definition CS and two members 

V and U, defined by vectors v0, v1, …,vn and u1, u2,…,un within CS, the distance 

between V and U can be calculated as: 

∑
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where u  is the mean of a dataset U and us is the standard deviation from U. The 

formula above already considers the so-called Z-transformation or standardization 

[13] which facilitates the standardization of distinct measurement scales utilised by 

different quality dimensions in order to enable the calculation of distances in a multi-

dimensional and multi-metric space. Please note, as mentioned in Section 2.2, 

different distance metrics could be applied depending on the nature and purpose of the 

CS. 

3.3. Representing Ontologies through Conceptual Spaces  

The derivation of an appropriate space CSi to represent a particular concept Ci of a 

given ontology O is understood a non-trivial task which aims at the creation of a CS 

instance which most appropriately represents the real-world entity represented by Ci. 

We particularly foresee a transformation procedure consisting of the following steps: 

S1. Representing concept properties pcij of Ci as dimensions dij of CSi. 

S2. Assignment of metrics to each quality dimension dij. 

S3. Assignment of prominence values pij to each quality dimension dij. 

S4. Representing instances Iik of Ci as members in CSi. 

Given the formal ontological representation of the CS model (Section 3.2), we are 

able to simply instantiate a specific CS by applying a transformation function  

ii CSCtrans ⇒:  

which is aimed at instantiating all elements of a CS, such as dimensions and 

prominence values (S1 – S3). S1 aims at representing each concept property pcij of Ci 

as a particular dimension instance dij together with a corresponding prominence pij of 

a resulting space CSi:  

( ){ } ( ){ }ℜ∈∈⇒∈ ijiijininiiiiiijinii pCSddpdpdpPCpcpcpcpctrans ,,...,,,...,,: 221121
 

Please note that we particularly distinguish between data type properties and relations. 

While the latter represent relations between concepts, these are not represented as 

dimensions since such dimensions would refer to a range of concepts (instances) 

instead of quantified metrics, as required by S2. Therefore, in the case of relations, we 

propose to maintain the relationships represented within the original ontology O 

without representing these within the resulting CSi. In that, the complexity of CSi is 

reduced to enable the maintainability of the spatial distance as appropriate similarity 

measure. The assignment of metric scales to dimensions (S2) which naturally are 

described using quantitative measurements, such as size or weight, is rather 



straightforward. In such cases, interval scale or ratio scale, could be used, whereas 

otherwise, a nominal scale might be required. S3 is aimed at assigning a prominence 

value pij – chosen from a predefined value range – to each dimension dij. Since the 

assignment of prominences to quality dimensions is of major importance for the 

expressiveness of the similarity measure within a CS, most probably this step requires 

incremental ex-post re-adjustments until a sufficient definition of a CS is achieved.  

 With respect to S4, one has to represent all instances Iki of a concept Ci as member 

instances in the created space CSi:  

ikik MItrans ⇒:  

This is achieved by transforming all instantiated properties piikl of Iik as valued vectors 

in CSi. 

( ){ } ( ){ }
ikikliknikikikikliknikik MvvvvPIpipipipitrans ∈⇒∈ ,...,,,...,,: 2121

 

Hence, given a particular CS, representing instances as members becomes just a 

matter of assigning specific measurements to the dimensions of the CS. In order to 

represent all concepts Ci of a given ontology O, the transformation function consisting 

of the steps S1-S4 has to be repeated iteratively for all Ci which are element of O. The 

accomplishment of the proposed procedure results in a set of CS instances which each 

refine a particular concept together with a set of member instances which each refine 

a particular instance. Please note that applying the procedure proposed here requires 

additional effort which needs to be further investigated within future work. 

4 Implementation - Exploiting Sensor Data for Semantic Web 

Service Discovery 

In previous work [3][4], we applied our two-fold approach to Semantic Web Services 

(SWS) technology [6] which aims at the automated discovery, orchestration and 

invocation of Web services based on comprehensive semantic annotations of services. 

Current results of SWS research are available in terms of reference models such as 

OWL-S [14], SAWSDL4 or WSMO [24]. In [3][4], our CS representation was 

deployed to refine instances which are part of SWS annotations in order to enable 

interoperability between heterogeneous SWS and SWS requests. In contrast, here we 

propose the utilization of our CS-based representational approach to facilitate 

interoperability between observations and measurements provided by sensors and 

symbolic SWS representations based on extensions which are described in this 

section. 

The representational model described above had been implemented by and aligned 

to established SWS technologies based on WSMO [24] and the Internet Reasoning 

Service IRS-III [1]. Further details on the IRS-III Service Ontology  and its extension 

through our CS formalisation can be found in [5]. However, please note that in 

principle the representational approach described above could be applied to any SWS 

reference model and is particularly well-suited to support rather light-weight 

approaches such as SAWSDL or WSMO Lite [21]. 
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In order to facilitate the representational approach described in Section 3, we 

aligned the CS Ontology (Section 3.2) with the IRS-III Service Ontology to allow for 

the refinement of individual concepts – used as part of formal SWS descriptions – as 

formally expressed CS. In that, instances being used to represent SWS characteristics 

such as interfaces or capabilities can be refined as vectors.  

irs:Goal

irs:Web Service

can-solve-goal 

irs:Concept

irs:Instance

cs:Conceptual Space

uses

instance-of

cs:Prototypical Member

uses

refined-as

refined-as

member-in

cs:Quality Dimension

cs:Valued Vector

values

uses

uses

 
Fig. 4. Core concepts of the CS Ontology aligned to the IRS-III Service Ontology. 

Figure 4 depicts the core concepts of CSO and their alignment with the IRS-III 
Service Ontology. Concepts (instances) as being used by IRS service or goal 
descriptions are refined as CS (members) within the CSO. In that, following the 
procedure proposed in Section 3.3, service capabilities are refined in multiple CS. To 
take into account the representational gap between measurement data as provided by 
sensors and symbolic SWS goal representations, we introduced a novel way of 
requesting goal achievements through IRS-III. Instead of simply invoking a goal by 
providing the goal achievement request SWSi, including the actual input data, we also 
foresee the on-the-fly provisioning of underlying assumptions in terms of sets of 
measurements, i.e. vectors {V1, V2,…, Vn}, which in fact describe the actual contextual 
environment of the request.    
 In order to facilitate automated similarity computation between SWS and SWS 
requests, we extended the matchmaking capabilities of IRS-III through a set of 
additional functionalities:   
 

F1. Instantiation of member Mi in CSO for each Vi provided as part of SWSi 
F2. Similarity computation between goal request SWSi and potentially relevant 

SWS  
 
Given the ontological refinement of SWS descriptions into CS as introduced in 
Section 3.2 this new functionality enables to automatically achieve IRS-III goals 
without being restricted to complete matches between a particular goal achievement 
request and the available SWS. When attempting to achieve a goal, our new function 
is provided with the actual goal request SWSi, named base, and the SWS descriptions 
of all x available services that are potentially relevant for the base – i.e. linked through 
a dedicated mediator:  

},...,,{ 21 xi SWSSWSSWSSWS ∪  

Each SWS contains a set of concepts C={c1..cm} and instances I={i1..in}. We first 
identify all members M(SWSi) – in the form of valued vectors {v1..vn} refining the 
instance il of the base as proposed in Section 3.2. In addition, for each concept c 
within the base the corresponding conceptual space representations MS={MS1..MSm} 
are retrieved. Similarly, for each SWSj related to the base, prototypical members 
M(SWSj) – which refine capabilities of SWSj and are represented in one of the 
conceptual spaces CS1..CSm, – are retrieved: 

)}(),...,(),({)( 21 xi SWSMSWSMSWSMSWSMCS ∪∪  



Based on the above ontological descriptions, for each member vl within M(SWSi), the 

Euclidean distances to any prototypical member of all M(SWSj) which is represented 

in the same space MSj as vl are computed. In case one set of prototypical members 

M(SWSj) contains several members in the same MS – e.g. SWSj targets several 

instances of the same kind – the algorithm just considers the closest distance since the 

closest match determines the appropriateness for a given goal. For example, if one 

SWS supports several different locations, just the one which is closest to the one 

required by SWSi determines the appropriateness.  

Consequently, a set of x sets of distances is computed as follows 

Dist(SWSi)={Dist(SWSi,SWS1), Dist(SWSi,SWS2) .. Dist(SWSi,SWSx)} where each 

Dist(SWSi,SWSj) contains a set of distances {dist1..distn} where any disti represents the 

distance between one particular member vi of SWSi and  one member refining one 

instance of the capabilities of SWSj. Hence, the overall similarity between the base 

SWSi and any SWSj could be defined as being reciprocal to the mean value of the 

individual distances between all instances of their respective capability descriptions 

and hence, is calculated as follows: 
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Finally, a set of x similarity values – computed as described above – which each 

indicates the similarity between the base SWSi and one of the x target SWS is 

computed:  
)},(),..,(),({ 2,1, xiii SWSSWSSimSWSSWSSimSWSSWSSim  

As a result, the most similar SWSj, i.e. the closest associated SWS, can be selected and 
invoked. In order to ensure a certain degree of overlap between the actual request and 
the invoked functionality, we also defined a threshold similarity value T which 
determines the similarity threshold for any potential invocation.    

5 Application: Measurement-based SWS discovery of Weather 

Forecast Web Services 

Our measurement-based SWS discovery approach (Section 4) was actualised within 

an initial proof-of-concept prototype application which mediates between different 

weather forecast Web services. This example use case illustrates how measurements 

can be dynamically mapped to symbolic representations, SWS in this case, by means 

of similarity-computation within CS.  

Here, SWS1, SWS2 and SWS3 provide weather forecast information for different 

locations. Each service has distinct constraints, and thus distinct SWS descriptions. In 

detail, SWS1 is able to provide forecasts for France and Spain while SWS2 and SWS3 

are providing forecasts for the United Kingdom. All services show different Quality 

of Service (QoS) parameters. Three distinct service ontologies O1, O2, and O3 had 

been created, each defining the capability of the respective service by using distinct 

vocabularies. For example, SWS2 considers concepts representing the notions of 

location and QoS together with corresponding instances (see also Table 1): 



{ }
22)2,(),,( SWSOQoSUKQoScountry ⊂⊂  

By applying the representational approach proposed in Section 3, each concept of the 

involved heterogeneous SWS representations had been refined as a shared CS, while 

instances - defining the capabilities of available SWS - were defined as prototypical 

members. For example, a simplified CS (CS1: Location Space in Figure 5) was 

utilized to refine geographical notions (e.g. country) by using two dimensions 

indicating the geospatial position of the location: 

{ } { } 12211 ),(),( CSlongitudelatitudelplp ==  

The two dimensions latitude and longitude are equally ranked, and hence, a 

prominence value of 1 has been applied to each dimension. Note that each of the 

depicted concepts and instances, such as O2:UK and O3:UK, are distinct and 

independent from each other, and thus might show heterogeneities, such as distinct 

labels, for instance United Kingdom and Great Britain. In the case of O2:UK and 

O3:UK, these two instances are refined by two distinct prototypical members: 

( ){ }12121 -3.435973,55.378051)( CSvvvSWSL i ∈===  and 

( ){ }12131 -3.435963,55.378048)( CSvvvSWSL i ∈=== . Each member has been defined by 

different individuals applying similar, but non-equivalent geodata.  

In addition, a second space (CS2: QoS Space in Figure 5) has been defined by three 

dimensions – latency (in ms), throughput (number of Web services), availability (in 

%): { } ( ){ } 2332211 ,,),,( CStyavailabilithroughputlatencyrprprp ==  
 

O3:QoS-3 O3:UK 

O3:QoS O3:Country
  

SWS Ontology O3 

is-a is-a 

O2:QoS-2 O2:UK 

O2:QoS O2:Country

 

SWS Ontology O2 

is-a is-a 

O1:QoS-1 O1:France 

O1:QoS O1:Country 

SWS Ontology O1 

is-a is-a 

O4:QoS-4 O4:Toulouse 

O4:QoS O4:City  

SWS Request Ontology O4 

is-a is-a 

  CS1 Location Space          CS2 QoS Space        

 
Fig. 5. Grounding assumptions of distinct weather forecast SWS to common CS. 

Potential service consumers define a goal (e.g. SWS4 in Figure 5) together with the set 

of input parameters and the underlying assumptions in terms of measurements. After 

accomplishment of F.1, i.e. the dynamic instantiation of members in their 

corresponding CS to represent the sensor data provided with the actual goal request 

SWS4, all involved goals and SWS were grounded in the same set of CS as depicted in 

Figure 5.  

In that, assumptions of available SWS had been described independently in terms 

of simple conjunctions of instances which were individually refined in shared CS as 

shown in Table 1. As shown in Table 1, the request SWS4 assumes a SWS which 



provides weather forecast for the location UK (L1(SWS4)) and ideal QoS (Q1(SWS4)) 

demanding zero latency but high throughput and availability. 

Table 1. Assumptions of involved SWS and SWS requests described in terms of vectors in MS1 

and MS2. 

 
Assumption

)..()..( 2121 mSWSiSWSiSWSinSWSiSWSiSWSiSWSi QQQLLLAss ∪∪∪∪∪∪∪=  

 Members Li in CS1 (locations) Members Cj in CS2 (QoS) 

SWS1 
L1(SWS1)={(46.227644, 2.213755)} 
L2(SWS1)={(40.463667, -3.74922)} 

Q1(SWS1)={(155, 2, 91)} 

SWS2 L1(SWS2)={(55.378051, -3.435973)} Q1(SWS2)={(15, 50, 98)} 

SWS3 L1(SWS3)={(55.378048, -3.435963)} Q1(SWS3)={(78, 5, 95)} 

SWS4 L1(SWS4={(55.378048, -3.435963)} Q1(SWS4)={(0,100,100)} 

 

Though no exact SWS matches these criteria, at runtime similarities are calculated 

between SWS4 and the related SWS (SWS1, SWS2, SWS3) through the similarity-based 

discovery function described in Section 4. This led to the calculation of the following 

similarity values:  

Table 2. Automatically computed similarities between SWS request SWS4 and available SWS. 

 Similarities  

SWS1 0.010290349 

SWS2 0.038284954 

SWS3 0.016257476  

Given these similarities, our introduced goal achievement method automatically 

selects the most similar SWS (i.e. SWS2 in the example above) and triggers its 

invocation.  

6 Discussion and Conclusions  

In order to contribute to the vision of the SSW, i.e. the convergence of sensor data and 

formal knowledge representations as part of the Semantic Web, we proposed a 

representational model which grounds ontological representations in CS to overcome 

the symbol grounding problem. The latter is perceived to be as one of the major 

obstacles towards the SSW. While ontological instances are represented as 

prototypical members within a CS, arbitrary sensor data which measures the 

dimensions of the CS can be associated with the most appropriate instance by 

identifying the most similar, i.e. the closest, prototypical member to the vector which 

represents the sensor data. Our approach is facilitated through a dedicated CS 

Ontology which allows to refine any arbitrary concept (instance) as CS (prototypical 

member). In that, our representational model allows to bridge between sensor 

measurements and symbolic knowledge representations by means of similarity 

computation between vectors within CS. 

In addition, we implemented our approach by applying it to the field of SWS and 

utilising it for measurement-based SWS discovery while bridging between symbolic 

SWS representations and sensor-based measurement data. Therefore, we extended the 



matchmaking algorithm of an existing SWS Broker, IRS-III, with new capabilities 

allowing for measurement-based matchmaking based on our two-fold representational 

model. A first proof-of-concept prototype application utilises our approach to enable 

measurement-based discovery of weather forecast Web services based on measured 

parameters such as the geospatial location and the service QoS.  

The proposed approach has the potential to further support interoperability between 

heterogeneous sensor data and symbolic knowledge representations. While our 

approach supports automatic mapping between ontology instances and sensor-based 

measurements it still requires a common agreement on shared CS. In addition, 

incomplete similarities are computable between partially overlapping CS.  

However, the authors are aware that our approach requires considerable effort to 

establish CS-based representations. Future work has to investigate on this effort in 

order to further evaluate the potential contribution of the proposed approach. 

Moreover, while overcoming issues introduced in Section 2, further issues remain. 

For example, whereas defining instances, i.e. vectors, within a given CS appears to be 

a straightforward process of assigning specific quantitative values to quality 

dimensions, the definition of the CS itself is not trivial. Nevertheless, distance 

calculation relies on the fact that resources are described in equivalent geometrical 

spaces. However, particularly with respect to the latter, traditional ontology and 

schema matching methods could be applied to align heterogeneous spaces. In 

addition, we would like to point out that the increasing usage of upper level 

ontologies, such as DOLCE [9] or SUMO [15], and emergence of common schemas 

for sensor data such as the OpenGIS Observations and Measurements Encoding 

Standard, leads to an increased sharing of ontologies at the concept level. As a result, 

our proposed hybrid representational model becomes increasingly applicable by 

further contributing to the vision of the SSW.  
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