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Abstract. This document presents the SEMbySEM project aiming to provide a 
framework for universal sensors management by semantics. The entire scope 
from the sensors description to the End-users display is addressed, including 
sensors connection and events handling, system ontology, business rules design, 
graphical models and End-users display. Within the course of the project a new 
semantic standard dedicated to system management is defined according to 
business requirements and addressing the semantic description of managed 
objects as well as the means to bind the actual entities to their conceptual 
counterparts. 

Keywords: Semantic Web Technologies, Sensor Web, Ontologies, Rules, 
Sensors, Internet of things. 

1 Introduction 

With the advent of what is commonly described as the “Internet of things”, the 
trend toward a world of sensors is becoming everyday more obvious as many current 
life objects become equipped with embedded data and communication capabilities 
(like RFID tags). In this “world of sensors”, the semantic sensor web is a framework 
aiming to provide ways to process the huge amount of data they will produce. 

Our work targets the end-user point of view. From an end-user point of view, the 
information provided by a set of sensors is only meaningful within the scope of some 
end-user activity, targeting a defined goal achievable via a dedicated scenario. 

 The SEMbySEM project aims at defining tools and standards for the management 
of systems defined as coherent set of objects and grounded on a semantic abstract 
representation of the system to be supervised or managed. 

This abstract representation has two purposes. The first one is to isolate the 
technical issues related to the communications with the various sensors, in what we 
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call a Façade Layer. This Facade layer transforms the data coming from these sensors 
into semantic information and allows end-users to focus only on their activity while 
ignoring the technical details of each sensor. The second purpose is to be able to work 
directly on a semantic model of the system consisting of dynamically updated 
ontology plus related business rules (i.e. production rules). In this way, the multiple 
sensors data is linked to concepts of the system using a well-defined level of 
granularity. For instance, sensors will be grouped together if they belong to the same 
object, or if they are in the same location. 

In order to define the ontology and the business rules a need for a new semantic 
representation appears, as the systems to be managed are intrinsically dynamic. A 
main need in the semantic model is the possible actions on real-life objects, as sensors 
may also be linked to actuators. 

2 Related work 

Sensor Web has gained interest due to hardware and communication advances 
(generalization of technologies such as RFID, geo-localisation, extension of internet-
connected devices) and needs for standards to allow more interoperability between the 
various types of sensors. The Open Geospatial Consortium1 developed a framework 
of standards for Sensor Web Enablement (SWE). This standardization effort enables 
the use of a neutral format to define the various sensors and systems, their interfaces, 
the type of information they convey and their communications. However, SWE 
standards are syntactic and do not embed logical expressivity for inference. Therefore 
the logic of the managed system, defining how the various sensors combine their 
information together to represent complex objects, needs to be embedded in the core 
of applications. 

On another hand, Semantic Web standards, developed by the World Wide Web 
consortium2, are able to represent complex knowledge, including logic associated to 
the data. RDF [5], as a neutral format for data representation, enables communication 
and storage in a neutral format. Based on this format, OWL [4] permits to define 
ontologies, i.e. the conceptualization of a given domain. While this format allows the 
definition of a model, it also enables the use of Description Logic (DL) to partly 
defines the behaviour of the system. For instance, Description Logic defines the 
notion of Restriction, allowing the definition of dynamic classification; instances are 
classified in a class as soon as they match given criteria (e.g. a given train is classified 
in the Late Train class as soon as it has some Delay). 

Since DL is sometimes below the expressivity needs for real systems 
representations, several proposals were developed to extend it with rules in order to 
embed more business logic in the model itself and not spread this additional logic in 
software code. SWRL [6] was proposed as extensions to this model, but is felt 
insufficient since the expressivity of the rule and the expressivity of the DL model can 

                                                           
1 OGC, http://www.opengeospatial.org/  
2 W3C, http://w3c.org/  
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lead to undecidability [16]. These standards also suffer from lack of skill from users 
who are not familiar with knowledge representation and Description Logics.  

From a corporate point of view, while production rule engines are already widely 
spread in enterprise applications they are not yet fully integrated with semantic 
models. Moreover, rules suffer from heterogeneity of expressivity (Production Rule, 
Logic Programs) and heterogeneity of formats. Several standardization processes are 
on-going, such as the JSR94 standard (addressing rule interoperability at Java level) 
and, at a more general level, the OMG Production Rule Representation (PRR) [9] and 
W3C Rule Interchange Format3 (RIF) proposal for a rule interoperability language4. 

In term of general framework for Semantic Sensor Web, different works highlight 
the added value of semantics, such as [1,2,3]. They propose different architectures 
gathering SWE, Ontology and Rules to process sensor data. These standard-based 
prototypes illustrate the added-value of such architecture to answer concrete use-
cases. However they not address the soundness of the system, the scalability issue and 
the user interaction in the system. 

Scalability issue mainly comes from the reasoning engine, able to apply the logic 
of the model. This issue comes from the complexity of the algorithms based on DL 
(e.g. NExpTime-complete) and of logic programming rule systems. 

Regarding user interaction, these systems focuses on monitoring applications and 
do not allow to perform action on the underlying systems linked by sensors. Sensors 
can be available as Web Service, but current SSW architecture does not take into 
account their potential operations. In particular ontologies do not include the notion of 
action. In this area, Semantic Web Service attempts to add semantic metadata to the 
Web Services standards. Some standards such as SAWSDL[7] or OWL-S[8] propose 
different supports of the semantics in Web Services. The first one allows semantically 
annotating the service when OWL-S allows to entirely define the service using 
semantic concepts. In the case of OWL-S it is then possible to define the goal of the 
service and how to perform some processes.  

Based on these assessments, we propose a framework able to go beyond the 
observed limitations, that is to say able (1) to provide a generic communication layer 
with sensors, (2) to semantically define a model and its logic to aggregate information 
from various sensors, (3) to allow the definition of the model of the managed system 
by business experts  thanks to a targeted standard, (4) to deal with large scale systems, 
(5) to perform actions on objects connected to sensors and (6) to display a pertinent 
interface to End-users.  

 

                                                           
3 W3C RIF (Rule Interchange Format) working group, 

http://www.w3.org/2005/rules/wiki/RIF_Working_Group 
4 There is an overlap in scope between W3C RIF and PRR. While PRR focuses on the standard 

metamodel definition and modeling of production rules with an XMI format, RIF focuses on 
a rule interchange format based on XML for web applications and also defines interactions 
between ontologies and rules, see [9] for more details. 

 



4 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte 

3 The SEMbySEM Project 

3.1 Project Overview 

SEMbySEM (SErvices Management by Semantics) is a 30-months European 
project carried out under the EUREKA ITEA2 framework and begun July 1st, 2008. 
This project aims at creating a lightweight, adaptive monitoring software system 
dedicated to the management of systems of all sizes. The Human-Machine Interface 
(HMI) will be dedicated for each End-user’s “business role”, displaying to each End-
user only the pertinent information about the monitored system. 

The software core of SEMbySEM will constitute the initial contribution of an 
Open Source project aiming to promote the use of domain specific semantics for the 
management of large systems in various domains like logistics, computing and system 
monitoring. 

Supervision software dedicated to future systems need to be easier to deploy and to 
maintain than the present ones, while addressing the increasing complexity of 
“systems of systems” and keeping an overall management capability for the users. 
The approach envisioned for SEMbySEM to address this issue is the extensive use of 
semantics in the system description allowing the active contribution of expert users 
for the monitoring system design and configuration.  

The SEMbySEM project is based on the definition of two standards and several 
tools: 

• A MicroConcepts standard for the semantic description of manageable 
objects and a standard allowing the mapping of real world Manageable 
Objects to MicroConcepts; 

• A consistent set of tools including a common software framework 
comprising runtime tools and authoring software. 

The targeted managed system size is between one thousand and one hundred 
thousand of concepts instances with ten thousands rules. 

3.2 Project Limitations 

The project is mainly dedicated to event-based supervision, aiming at hiding any 
technological issue under a semantic abstraction layer and specific HMI for each End-
user. This framework is very flexible and can be extended for further applications 
depending on specific needs. 

Some limitations will appear in the first version of the project. This one will 
mainly focus on ontological system representation and rules reasoning. For instance 
planning or workflow processing are not included in the SEMbySEM framework. The 
second drawback, common to all event-based systems, is that commands from End-
users may not be available to sensors as they will not be connected or available at any 
time.  
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3.3 Illustrative Use-Case  

An illustrative Use-Case is the management of sensors in a railways station. In a 
station, several sensors may exist notably for building management and security 
(smoke sensors, doors sensors, ...) or for the operations of the station (sensors in the 
engines and wagons,...) Managed objects also exist, that are linked to sensors and on 
which actions are also possible: escalators, lifts, cameras, live departure boards, TV 
screens and the station announcement system.  

Sensors are accessed by End-users through a representation of managed objects 
and local grouping: security officers consider rooms or areas more than sensors. A 
train is not a physical object, it is a railways-domain concept composed of engine(s) 
and wagons and having its own properties (number, schedule, etc.). Therefore sensors 
composition and abstraction are mandatory from a business point of view. 

Actions may be done on managed objects. Cameras can be rotated, doors can be 
closed, live departure boards are regularly modified. Therefore the Actions on 
managed objects are also to be considered when we design such a system. Sensors are 
not enough to describe this system, as only bottom-up information collection is 
insufficient. 

Any automatic procedures that are embedded in the existing information system 
can be expressively described in rules. For example, when a fire alarm is triggered, 
the fire doors close automatically. Describing such rules in the system is interesting 
from a business point of view. 

4 Semantics of the system 

4.1 MicroConcepts, a business-driven standard for representation of objects 

The definition of a semantic model able to deal with the specificity of Sensor Web is 
important. As mentioned earlier there are two trends to model sensor web data. First 
is to use OGC syntactic standards, which are specifically designed for sensors but 
lack for semantics, and other trend is to use Semantic Web standards such as OWL to 
bring semantics to the definition. 

Before choosing any standard we started a bottom-up analysis of the business 
needs to propose a business-driven solution and eventually chose or design an 
appropriate standard. We firstly pointed out the need of a high level standard to allow 
easy system management by end-users, receiving semantic information from the 
Façade, itself connected to sensors. Our need was then to define the semantics used 
by experts compared to the needs. 

Our study shown that OWL and the use of Description Logic are difficult to handle 
by business experts. In particular, users familiar with enterprise data management and 
more specifically databases are confused with the Open World Assumption5  

                                                           
5 Definition from Wikipedia: In formal logic, the Open World Assumption is the assumption 

that the truth-value of a statement is independent of whether or not it is known by any single 
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principle. The use of Close World Assumption and Unique Name Assumption6 
enables a better adoption of this standard since it is closer to databases and more 
generally to enterprise data management, compared to Open-World-Assumption 
which targets open web environment. In this context, various OWL axioms can be 
transformed in DB-like constraints as proposed in [10] and experimented in [11] to 
ensure the consistency of the model. 

Additionally, OWL expressiveness is somewhat limited to express some business 
needs because models are often very sophisticated. In particular qualified cardinality 
restrictions, property composition roles and efficient management of n-ary 
relationships and meta-modelling are missing compared to some real business needs. 
At the time of our study, OWL 2 working group published a working draft of the next 
OWL standard [12], extending the language by a number of new features such as 
qualified cardinality restrictions, property composition roles, definition of interval 
restriction for literals, etc. and then answering to several of our needs. 

Compared to our needs, further extensions can be proposed, notably Advanced 
Property Composition7 (saying for example that a property value of an instance equals 
the average/min/max/sum of some of the value of its components), Actions enabling 
acting on objects (for example "start" or "stop" a device managed by the system) and 
Parameters. 

We then defined a business-oriented model, named MicroConcept, developed in 
the scope of the SEMbySEM project. This is a business-driven standard to be publicly 
released, and comprising a limited set of axioms. The main ones are the following: 

- Ontology, as container of all objects of a given domain. 
- Concept, as classifier for objects sharing some common features. 
- Property (with object or literal value), defined independently from concepts 

and then able to be used in different classes. Property can use: 
o Domain. 
o Range. 
o Cardinality restrictions. 
o Qualified Cardinality Restrictions. 
o Properties of properties (transitive, symmetric, etc.) 

                                                                                                                                           
observer or agent to be true. It is the opposite of the closed world assumption which holds 
that any statement that is not known to be true is false. […] Semantic Web languages such as 
RDF(S) and OWL make the open world assumption. The absence of a particular statement 
within the web means, in principle, that the statement has not been made explicitly yet, 
irrespectively of whether it would be true or not, and irrespectively of whether we believe (or 
would believe) that it is (or would be) true or not. In essence, from the absence of a statement 
alone, a deductive reasoner cannot (and must not) infer that the statement is false. 

6 Definition from Wikipedia: The Unique Name Assumption is a concept from ontology 
languages and Description Logics. In logics with the unique name assumption, different 
names always refer to different entities in the world. The ontology language OWL does not 
make this assumption, but provides explicit constructs to express that two names denote 
distinct entities [4]. 

7 Advanced Property Composition was part of OWL 2 discussions but seems not appear in 
latest working drafts. 
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o Default value for properties. 
o Static values (values shared by all instances of a concept). 
o Property composition (a property value is equal to the property value 

of a linked component). 
o Advanced property composition (similar to previous one but using 

mathematical functions). 
- Concept and property subsumption to define inheritance. 
- Instance of a concept. 
- Enumeration. 
- Action, defining the way to act on the real object represented by its instances. 

o Actions have input and output parameters. 
- All elements contain identification (unique ID), versioning, localized name 

and description. 

4.2 Adding rules to MicroConcepts 

Rules bring added-value by avoiding spreading the business logic across company 
models, code and documentation. It ensures the uniqueness of the behaviour attached 
to semantic objects.  A drawback of this approach is that the addition of a rule 
language on top of an ontology language (such as OWL) can lead to inconsistency 
because axioms of the language and rules can affect each others. Different approaches 
were proposed such as Semantic Web Rule Language (SWRL)[6] and Description 
Logic Program (DLP) [13]. SWRL extends OWL with rules in a non-native way; in 
the DLP approach, the intersection of Description Logic and Logic Program is used, 
using only a subset of DL but providing a better computability.  

For higher scalability we developed the MicroConcept standard in order to be used 
with a production rule engine (such as JESS or DROOLS) implementing RETE [14] 
algorithm. The scalability of such approach was proven and enables its use in 
industrial environment as RETE-based algorithms are already used in many 
enterprises. 

In order to cope with the heterogeneity of rule standards, we define rules in a 
neutral format linked to the MicroConcept standard. In particular, the rules are able to 
directly address the semantic objects of the model (concepts, instances, properties) 
and benefit from the logic of the model: for instance, if a rule uses a concept, the 
matching is done for the more general concept as well. 

Integration of a RETE-based rule engine, giving good performances is then 
smooth. 

4.3 Implementation strategy of the MicroConcept standard 

Our studies enable us to design specifications and language semantics of the 
MicroConcept standard, based on the needs expressed by real use-cases, without 
limitation to existing standards. Compared, for example, to OWL 2, MicroConcept 
adds several axioms (notably Action and Advanced Property Composition) and 
moreover uses the closed-world and unique-name assumptions. 
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Besides these differences, we want to leverage existing standards for the 
implementation in order to benefit from existing design tools, API, serialization forms 
and repositories. We identified two strategies of implementation: 

(1) Directly define MicroConcept based on MOF 2 [15] models (an OMG 
recommendation). Similar to OWL2, whose structural definition is based on 
the MOF, our language can be expressed in term of MOF meta-model, giving 
it a formal, computable definition. 
As a result, MicroConcept is a meta-model and can be serialized in XMI 
format, edited with compliant editors (such as UML tools with an appropriate 
profile), and moreover can benefit from a powerful programmatic 
environment. In particular we can benefit from technologies such as model 
transformation implemented in the Eclipse Modeling Framework8. This 
ensures to limit specific code to the minimum and to be able to maintain the 
standard in the future. 

(2) Define MicroConcept based on OWL 2 meta-model. In this case, our standard 
represents a meta-ontology which can be instantiated by business ontology 
taking the benefits from all the logic of the standard and from all the tools 
developed around this language: parsers, inference engines (e.g. Pellet9), 
programmatic environment (such as Jena10 or OWL API11) and repositories. 
Extensions proposed in our standards (in particular Action) are addressed by 
the rule engine and by a set of rules not editable by users, given a way to 
easily maintain the standard and be able to make some evolution. Closed-
World-Assumption is addressed by the specific architecture of the core of the 
application (Cf. subsection 5.4). 

4.4 Illustrative examples 

We give here Micro-Concepts and rules for the illustrative use-case presented in 
section 3.3. Full specifications of these languages will be published later on the 
project website12.  

4.4.1 Micro-Concepts 

The following Micro-Concepts are defined:  
• Train 
• Engine 
• Wagon 
• Station 
• Camera 

                                                           
8 http://www.eclipse.org/modeling/emf/ 
9 http://clarkparsia.com/pellet 
10 http://jena.sourceforge.net/ 
11 http://owlapi.sourceforge.net/ 
12 http://www.sembysem.org  
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• Light 

4.4.2 Properties 

The following Properties are defined: 
• speed: relation possessed by a Train or an Engine with a decimal value. 
• serialNumber: relation possessed by an Engine or a Wagon with a string 

value. 
• trainNumber : relation possessed by a Train with an integer value. 
• hasEngine: relation possessed by a Train with a value that is an instance of 

Engine. 
• hasWagon: relation possessed by a Train with values that are instances of 

Wagon. 
• inPlatform : relation possessed by a Train with a value that is an instance of 

the Platform. 
• hasLight: relation possessed by a Platform with values that are instances of 

Lights. 
• hasCamera: relation possessed by a Platform with values that are instances 

of Camera. 

4.4.3 Actions 

The following Actions are defined: 
• Engine has 'Start'  and 'Stop' actions. 
• Camera has a 'Focus_on_platform' action. This action has a parameter 

'to_platform ' taking an instance of  'Platform ' as parameter. 
• Light has 'Switch_On' and 'Switch_Off' actions. 

4.4.4 Rules 

Rules can be defined directly on top of MicroConcepts. We give as example the 
expression of the rule "If a train arrives at a given platform, turn the camera to that 
platform and switch on all the lights on this platform". This rule used the proposed 
rule serialization. 
 

rule "TrainInPlatform" 
if 
{ 
// If a train arrives at a given platform 
?t := Train (?tPlatform := inPlatform, ?cams := one(hasCamera), ?lights := 
one(hasLight) ) 
} 
then 
{ 
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// Then turn the camera to the given platform 
?CameraFocusAction := createAction(?cams, Camera/Focus_on_platform); 
?CameraFocusAction->to_platform := ?tPlatform; 
execute(?CameraFocusAction); 
 
//Then switch on the lights of this platform 
excecute(?lights, Light/Switch_On); 
 
} 

5 SEMbySEM general architecture 

Let us consider an existing set of communicating objects or elements, constituting 
what from now we will call indifferently a universe or a managed system. This 
universe will be monitored with sensors dispatched on several fixed locations and on 
some moving objects. The deployment and operational use of a management system 
for this universe will be done in two phases, design time and runtime. Design time 
operations will encompass the detailed definition of all the sensors which can 
contribute to the universe, the ontology of the universe including all the existing and 
required concepts related to the universe sensors and their associated business rules, 
and the viewpoints of each stakeholder including a display HMI. Runtime will be the 
operational use of the management system controlling this universe. 

 
5.1 Design time 
 

The design is intended to be done by expert users in the domain, assisted by 
ontology designers, rules designers and sensors communications designers. 

Firstly, the ontology definition concerns the mandatory concepts defining and 
operating the universe, including first the objects that are managed and on which 
sensors acquire data, objects composed from several elementary objects and abstract 
objects that correspond to business concepts. The associated rules to permanently 
update the ontology are a whole part of the universe dynamic model. The ontology 
must also support the actions defined on the concepts and linked to actuators on the 
real managed objects. 

The sensors definition includes all the sensors that can be encountered within the 
universe from an operational point of view, meaning the communication protocols to 
access them, the type of communication they support, the kind of message they 
deliver, the potential actions on the managed objects, the operational flow rate of data, 
an identifier to the associated concepts in the ontology, etc.  

The stakeholders’ viewpoints definition includes all the graphic data (icons, 
widgets, buttons, etc.) and the links to the related semantic data (in the ontology). 
These two features are grouped in several HMI models, each model containing one or 
several different views. Each model corresponds to a set of End-users and will present 
only pertinent information for this set of users. 
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5.2 Runtime 

 
During runtime the dynamicity of the managed system is very important. The fixed 

and mobile sensors emit messages when an event occurs or when they are scheduled 
for it, while End-users connect and disconnect through their interfaces, act on the 
managed objects or on virtual objects in the semantic model. Each event from sensors 
is registered and processed in order to update the semantic model through direct 
modification and modifications triggered by the business rules. The display of the 
connected End-users must be updated accordingly when the semantic model updates 
are pertinent for them. Each action from an End-user or from rules is processed 
internally and sent to the right managed object when necessary. 

 
5.3 Overall architecture 

 
The architecture we have retained to address these issues is composed of three 

layers: the Façade layer, the Core layer and the Visualisation layer. The Façade layer 
is the interface with sensors and the Visualisation layer is the interface with End-
users. The Core layer contains the semantic model. 

The goal of the Façade layer is to be the interface between the sensors and the 
semantic model. All the technical diversity concerning protocols, communication 
matters, sensor types and so on is addressed in this layer. The Façade transforms 
heterogeneous messages and events from sensors to standardized messages addressed 
to one or several concepts transmitted to the Core layer. The Façade also transforms 
actions messages from the Core to the actuators. 

The Core processes the events from the Façade in order to maintain an up-to-date 
semantic model of the universe. For this the arrival of a message from the Façade 
triggers a short process: identification of the concept instance related to the message 
or creation of this instance if it does not exist, consistency validation of the update 
with regards to the model requirements and update of the semantic model. 
Afterwards, the rule engine is called, taking as input the successful model changes 
and processing until no rule is left to trigger. The second main task of the core layer is 
to send the pertinent semantic data to the Visualisation layer. Each time an End-user 
connects to the system, the Core layer is notified of the semantic concepts instances 
requiring data display. Then each time these instances are updated the data is also sent 
to the Visualisation layer until the End-user disconnects. 

The Visualisation layer aims at displaying to the End-users the pertinent 
information they require to perform their task. Therefore each End-user has access to 
tailored viewpoints, designed by expert users and HMI experts and displaying data 
from the semantic model. This information is continuously updated each time an 
event occurs. The End-users may also perform actions on the instances of the 
semantic model through their HMI. The Visualisation layer performs several tasks: it 
gets all the semantic data that is of interest for the End-user and links it to graphical 
components for display, according to HMI models. 
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5.4 Architecture of the 

In the two implementation strategies
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use 

First, a Constraint Checking module is responsible for consistency checks similarly 
to DB-style constraints [
Closed-World-Assumption, it is applied, in particular, on Cardinality (e.g. if a 
property has a MaxCardinality
Property.  

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 
classification, use of property composition, symmetric, inve
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Fig. 1. Overall SEMbySEM architecture 

Architecture of the semantic  processing layer 

In the two implementation strategies described at section 4.3, the embedded logic is 
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use three levels to process the logic of our model.

First, a Constraint Checking module is responsible for consistency checks similarly 
style constraints [10]. This module ensures the consistency of the model in the 

Assumption, it is applied, in particular, on Cardinality (e.g. if a 
MaxCardinality of 1 and has already one value), and Functional 

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 
classification, use of property composition, symmetric, inverse property, etc.

 

, the embedded logic is 
not exactly the same as OWL, especially regarding the concept of Closed-World-

three levels to process the logic of our model. 
First, a Constraint Checking module is responsible for consistency checks similarly 

]. This module ensures the consistency of the model in the 
Assumption, it is applied, in particular, on Cardinality (e.g. if a 

ne value), and Functional 

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 

rse property, etc. 
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Finally, a rule engine based on RETE algorithm, applies the additional business 
logic defined by the business user. 

Additionally, a query engine is responsible to handle queries received from the 
visualization layer. It interprets the query and answer according to the logic of the 
model (already inferred by the 3 previously described modules since we use forward 
chaining inference). 

The model itself benefit from the advantage of the chosen implementation strategy. 
In particular memory, disk representation, serialization and persistency use state-of-
the-art standards to provide a powerful and maintainable solution. 

Fig. 2. Core layer general architecture 

6 Current status of the project 

At the time of the redaction of this paper, the SEMbySEM project is still in its first 
year. Architectural choices had been done as well as functional and technical 
specification of most parts of the framework. The MicroConcept standard was drafted 
and will be checked against the use-cases before release.  

The project starts now its development phase. First results and evaluations are 
expected at the end of this year. 

In order to foster SEMbySEM standard and framework, an open-source version of 
the framework will be released in early 2010. Standards and framework will be 
available on the official website of the project (http://www.sembysem.org) where 
additional information will be added progressively. 
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7 Conclusion and future work  

We have presented here the whole idea of the SEMbySEM project aiming at the 
creation of a semantic infrastructure for service management. The main idea is to use 
a business-driven standard called MicroConcept to define the semantic model linked 
to sensors and manageable objects. MicroConcept was designed according to business 
needs but will be implemented with respect to state-of-the-art standards in order to 
provide both the expressivity required to model the use-case and the scalability to 
implement them. Additionally, a production rule engine supports the business logic in 
order to minimize specific developments.  

In upstream of this core system, sensors and manageable objects low-level 
communications are transformed by the Façade layer to feed the semantic model. 

In downstream, users can access to the system through a visualisation layer 
performing queries to the semantic model and supporting actions from users to the 
system. 

This architecture enables a powerful framework able to answer to a large variety of 
use-cases. The implementation phase is starting and will helps to validate all the 
architecture presented in this paper. 
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