
SEMbySEM: a Framework for Sensors Management

Jean-Sébastien Brunner, Jean-François Goudou, Patrick Gatellier, Jérôme Beck,
Charles-Eric Laporte

Theresis Innovation Center - Thales Security Solutions & Services
Campus Polytechnique - 1, avenue Augustin Fresnel

91767 Palaiseau cedex - France
jean-sebastien.brunner@thalesgroup.com

jean-francois.goudou@thalesgroup.com

patrick.gatellier@thalesgroup.com

jerome.beck@thalesgroup.com

charles-eric.laporte@thalesgroup.com

Abstract. This document presents the SEMbySEM project aiming to provide a
framework for universal sensors management by semantics. The entire scope
from the sensors description to the End-users display is addressed, including
sensors connection and events handling, system ontology, business rules design,
graphical models and End-users display. Within the course of the project a new
semantic standard dedicated to system management is defined according to
business requirements and addressing the semantic description of managed
objects as well as the means to bind the actual entities to their conceptual
counterparts.

Keywords: Semantic Web Technologies, Sensor Web, Ontologies, Rules,
Sensors, Internet of things.

1 Introduction

With the advent of what is commonly described as the “Internet of things”, the
trend toward a world of sensors is becoming everyday more obvious as many current
life objects become equipped with embedded data and communication capabilities
(like RFID tags). In this “world of sensors”, the semantic sensor web is a framework
aiming to provide ways to process the huge amount of data they will produce.

Our work targets the end-user point of view. From an end-user point of view, the
information provided by a set of sensors is only meaningful within the scope of some
end-user activity, targeting a defined goal achievable via a dedicated scenario.

 The SEMbySEM project aims at defining tools and standards for the management
of systems defined as coherent set of objects and grounded on a semantic abstract
representation of the system to be supervised or managed.

This abstract representation has two purposes. The first one is to isolate the
technical issues related to the communications with the various sensors, in what we

2 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

call a Façade Layer. This Facade layer transforms the data coming from these sensors
into semantic information and allows end-users to focus only on their activity while
ignoring the technical details of each sensor. The second purpose is to be able to work
directly on a semantic model of the system consisting of dynamically updated
ontology plus related business rules (i.e. production rules). In this way, the multiple
sensors data is linked to concepts of the system using a well-defined level of
granularity. For instance, sensors will be grouped together if they belong to the same
object, or if they are in the same location.

In order to define the ontology and the business rules a need for a new semantic
representation appears, as the systems to be managed are intrinsically dynamic. A
main need in the semantic model is the possible actions on real-life objects, as sensors
may also be linked to actuators.

2 Related work

Sensor Web has gained interest due to hardware and communication advances
(generalization of technologies such as RFID, geo-localisation, extension of internet-
connected devices) and needs for standards to allow more interoperability between the
various types of sensors. The Open Geospatial Consortium1 developed a framework
of standards for Sensor Web Enablement (SWE). This standardization effort enables
the use of a neutral format to define the various sensors and systems, their interfaces,
the type of information they convey and their communications. However, SWE
standards are syntactic and do not embed logical expressivity for inference. Therefore
the logic of the managed system, defining how the various sensors combine their
information together to represent complex objects, needs to be embedded in the core
of applications.

On another hand, Semantic Web standards, developed by the World Wide Web
consortium2, are able to represent complex knowledge, including logic associated to
the data. RDF [5], as a neutral format for data representation, enables communication
and storage in a neutral format. Based on this format, OWL [4] permits to define
ontologies, i.e. the conceptualization of a given domain. While this format allows the
definition of a model, it also enables the use of Description Logic (DL) to partly
defines the behaviour of the system. For instance, Description Logic defines the
notion of Restriction, allowing the definition of dynamic classification; instances are
classified in a class as soon as they match given criteria (e.g. a given train is classified
in the Late Train class as soon as it has some Delay).

Since DL is sometimes below the expressivity needs for real systems
representations, several proposals were developed to extend it with rules in order to
embed more business logic in the model itself and not spread this additional logic in
software code. SWRL [6] was proposed as extensions to this model, but is felt
insufficient since the expressivity of the rule and the expressivity of the DL model can

1 OGC, http://www.opengeospatial.org/
2 W3C, http://w3c.org/

SEMbySEM: a Framework for Sensors Management 3

lead to undecidability [16]. These standards also suffer from lack of skill from users
who are not familiar with knowledge representation and Description Logics.

From a corporate point of view, while production rule engines are already widely
spread in enterprise applications they are not yet fully integrated with semantic
models. Moreover, rules suffer from heterogeneity of expressivity (Production Rule,
Logic Programs) and heterogeneity of formats. Several standardization processes are
on-going, such as the JSR94 standard (addressing rule interoperability at Java level)
and, at a more general level, the OMG Production Rule Representation (PRR) [9] and
W3C Rule Interchange Format3 (RIF) proposal for a rule interoperability language4.

In term of general framework for Semantic Sensor Web, different works highlight
the added value of semantics, such as [1,2,3]. They propose different architectures
gathering SWE, Ontology and Rules to process sensor data. These standard-based
prototypes illustrate the added-value of such architecture to answer concrete use-
cases. However they not address the soundness of the system, the scalability issue and
the user interaction in the system.

Scalability issue mainly comes from the reasoning engine, able to apply the logic
of the model. This issue comes from the complexity of the algorithms based on DL
(e.g. NExpTime-complete) and of logic programming rule systems.

Regarding user interaction, these systems focuses on monitoring applications and
do not allow to perform action on the underlying systems linked by sensors. Sensors
can be available as Web Service, but current SSW architecture does not take into
account their potential operations. In particular ontologies do not include the notion of
action. In this area, Semantic Web Service attempts to add semantic metadata to the
Web Services standards. Some standards such as SAWSDL[7] or OWL-S[8] propose
different supports of the semantics in Web Services. The first one allows semantically
annotating the service when OWL-S allows to entirely define the service using
semantic concepts. In the case of OWL-S it is then possible to define the goal of the
service and how to perform some processes.

Based on these assessments, we propose a framework able to go beyond the
observed limitations, that is to say able (1) to provide a generic communication layer
with sensors, (2) to semantically define a model and its logic to aggregate information
from various sensors, (3) to allow the definition of the model of the managed system
by business experts thanks to a targeted standard, (4) to deal with large scale systems,
(5) to perform actions on objects connected to sensors and (6) to display a pertinent
interface to End-users.

3 W3C RIF (Rule Interchange Format) working group,

http://www.w3.org/2005/rules/wiki/RIF_Working_Group
4 There is an overlap in scope between W3C RIF and PRR. While PRR focuses on the standard

metamodel definition and modeling of production rules with an XMI format, RIF focuses on
a rule interchange format based on XML for web applications and also defines interactions
between ontologies and rules, see [9] for more details.

4 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

3 The SEMbySEM Project

3.1 Project Overview

SEMbySEM (SErvices Management by Semantics) is a 30-months European
project carried out under the EUREKA ITEA2 framework and begun July 1st, 2008.
This project aims at creating a lightweight, adaptive monitoring software system
dedicated to the management of systems of all sizes. The Human-Machine Interface
(HMI) will be dedicated for each End-user’s “business role”, displaying to each End-
user only the pertinent information about the monitored system.

The software core of SEMbySEM will constitute the initial contribution of an
Open Source project aiming to promote the use of domain specific semantics for the
management of large systems in various domains like logistics, computing and system
monitoring.

Supervision software dedicated to future systems need to be easier to deploy and to
maintain than the present ones, while addressing the increasing complexity of
“systems of systems” and keeping an overall management capability for the users.
The approach envisioned for SEMbySEM to address this issue is the extensive use of
semantics in the system description allowing the active contribution of expert users
for the monitoring system design and configuration.

The SEMbySEM project is based on the definition of two standards and several
tools:

• A MicroConcepts standard for the semantic description of manageable
objects and a standard allowing the mapping of real world Manageable
Objects to MicroConcepts;

• A consistent set of tools including a common software framework
comprising runtime tools and authoring software.

The targeted managed system size is between one thousand and one hundred
thousand of concepts instances with ten thousands rules.

3.2 Project Limitations

The project is mainly dedicated to event-based supervision, aiming at hiding any
technological issue under a semantic abstraction layer and specific HMI for each End-
user. This framework is very flexible and can be extended for further applications
depending on specific needs.

Some limitations will appear in the first version of the project. This one will
mainly focus on ontological system representation and rules reasoning. For instance
planning or workflow processing are not included in the SEMbySEM framework. The
second drawback, common to all event-based systems, is that commands from End-
users may not be available to sensors as they will not be connected or available at any
time.

SEMbySEM: a Framework for Sensors Management 5

3.3 Illustrative Use-Case

An illustrative Use-Case is the management of sensors in a railways station. In a
station, several sensors may exist notably for building management and security
(smoke sensors, doors sensors, ...) or for the operations of the station (sensors in the
engines and wagons,...) Managed objects also exist, that are linked to sensors and on
which actions are also possible: escalators, lifts, cameras, live departure boards, TV
screens and the station announcement system.

Sensors are accessed by End-users through a representation of managed objects
and local grouping: security officers consider rooms or areas more than sensors. A
train is not a physical object, it is a railways-domain concept composed of engine(s)
and wagons and having its own properties (number, schedule, etc.). Therefore sensors
composition and abstraction are mandatory from a business point of view.

Actions may be done on managed objects. Cameras can be rotated, doors can be
closed, live departure boards are regularly modified. Therefore the Actions on
managed objects are also to be considered when we design such a system. Sensors are
not enough to describe this system, as only bottom-up information collection is
insufficient.

Any automatic procedures that are embedded in the existing information system
can be expressively described in rules. For example, when a fire alarm is triggered,
the fire doors close automatically. Describing such rules in the system is interesting
from a business point of view.

4 Semantics of the system

4.1 MicroConcepts, a business-driven standard for representation of objects

The definition of a semantic model able to deal with the specificity of Sensor Web is
important. As mentioned earlier there are two trends to model sensor web data. First
is to use OGC syntactic standards, which are specifically designed for sensors but
lack for semantics, and other trend is to use Semantic Web standards such as OWL to
bring semantics to the definition.

Before choosing any standard we started a bottom-up analysis of the business
needs to propose a business-driven solution and eventually chose or design an
appropriate standard. We firstly pointed out the need of a high level standard to allow
easy system management by end-users, receiving semantic information from the
Façade, itself connected to sensors. Our need was then to define the semantics used
by experts compared to the needs.

Our study shown that OWL and the use of Description Logic are difficult to handle
by business experts. In particular, users familiar with enterprise data management and
more specifically databases are confused with the Open World Assumption5

5 Definition from Wikipedia: In formal logic, the Open World Assumption is the assumption

that the truth-value of a statement is independent of whether or not it is known by any single

6 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

principle. The use of Close World Assumption and Unique Name Assumption6
enables a better adoption of this standard since it is closer to databases and more
generally to enterprise data management, compared to Open-World-Assumption
which targets open web environment. In this context, various OWL axioms can be
transformed in DB-like constraints as proposed in [10] and experimented in [11] to
ensure the consistency of the model.

Additionally, OWL expressiveness is somewhat limited to express some business
needs because models are often very sophisticated. In particular qualified cardinality
restrictions, property composition roles and efficient management of n-ary
relationships and meta-modelling are missing compared to some real business needs.
At the time of our study, OWL 2 working group published a working draft of the next
OWL standard [12], extending the language by a number of new features such as
qualified cardinality restrictions, property composition roles, definition of interval
restriction for literals, etc. and then answering to several of our needs.

Compared to our needs, further extensions can be proposed, notably Advanced
Property Composition7 (saying for example that a property value of an instance equals
the average/min/max/sum of some of the value of its components), Actions enabling
acting on objects (for example "start" or "stop" a device managed by the system) and
Parameters.

We then defined a business-oriented model, named MicroConcept, developed in
the scope of the SEMbySEM project. This is a business-driven standard to be publicly
released, and comprising a limited set of axioms. The main ones are the following:

- Ontology, as container of all objects of a given domain.
- Concept, as classifier for objects sharing some common features.
- Property (with object or literal value), defined independently from concepts

and then able to be used in different classes. Property can use:
o Domain.
o Range.
o Cardinality restrictions.
o Qualified Cardinality Restrictions.
o Properties of properties (transitive, symmetric, etc.)

observer or agent to be true. It is the opposite of the closed world assumption which holds
that any statement that is not known to be true is false. […] Semantic Web languages such as
RDF(S) and OWL make the open world assumption. The absence of a particular statement
within the web means, in principle, that the statement has not been made explicitly yet,
irrespectively of whether it would be true or not, and irrespectively of whether we believe (or
would believe) that it is (or would be) true or not. In essence, from the absence of a statement
alone, a deductive reasoner cannot (and must not) infer that the statement is false.

6 Definition from Wikipedia: The Unique Name Assumption is a concept from ontology
languages and Description Logics. In logics with the unique name assumption, different
names always refer to different entities in the world. The ontology language OWL does not
make this assumption, but provides explicit constructs to express that two names denote
distinct entities [4].

7 Advanced Property Composition was part of OWL 2 discussions but seems not appear in
latest working drafts.

SEMbySEM: a Framework for Sensors Management 7

o Default value for properties.
o Static values (values shared by all instances of a concept).
o Property composition (a property value is equal to the property value

of a linked component).
o Advanced property composition (similar to previous one but using

mathematical functions).
- Concept and property subsumption to define inheritance.
- Instance of a concept.
- Enumeration.
- Action, defining the way to act on the real object represented by its instances.

o Actions have input and output parameters.
- All elements contain identification (unique ID), versioning, localized name

and description.

4.2 Adding rules to MicroConcepts

Rules bring added-value by avoiding spreading the business logic across company
models, code and documentation. It ensures the uniqueness of the behaviour attached
to semantic objects. A drawback of this approach is that the addition of a rule
language on top of an ontology language (such as OWL) can lead to inconsistency
because axioms of the language and rules can affect each others. Different approaches
were proposed such as Semantic Web Rule Language (SWRL)[6] and Description
Logic Program (DLP) [13]. SWRL extends OWL with rules in a non-native way; in
the DLP approach, the intersection of Description Logic and Logic Program is used,
using only a subset of DL but providing a better computability.

For higher scalability we developed the MicroConcept standard in order to be used
with a production rule engine (such as JESS or DROOLS) implementing RETE [14]
algorithm. The scalability of such approach was proven and enables its use in
industrial environment as RETE-based algorithms are already used in many
enterprises.

In order to cope with the heterogeneity of rule standards, we define rules in a
neutral format linked to the MicroConcept standard. In particular, the rules are able to
directly address the semantic objects of the model (concepts, instances, properties)
and benefit from the logic of the model: for instance, if a rule uses a concept, the
matching is done for the more general concept as well.

Integration of a RETE-based rule engine, giving good performances is then
smooth.

4.3 Implementation strategy of the MicroConcept standard

Our studies enable us to design specifications and language semantics of the
MicroConcept standard, based on the needs expressed by real use-cases, without
limitation to existing standards. Compared, for example, to OWL 2, MicroConcept
adds several axioms (notably Action and Advanced Property Composition) and
moreover uses the closed-world and unique-name assumptions.

8 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

Besides these differences, we want to leverage existing standards for the
implementation in order to benefit from existing design tools, API, serialization forms
and repositories. We identified two strategies of implementation:

(1) Directly define MicroConcept based on MOF 2 [15] models (an OMG
recommendation). Similar to OWL2, whose structural definition is based on
the MOF, our language can be expressed in term of MOF meta-model, giving
it a formal, computable definition.
As a result, MicroConcept is a meta-model and can be serialized in XMI
format, edited with compliant editors (such as UML tools with an appropriate
profile), and moreover can benefit from a powerful programmatic
environment. In particular we can benefit from technologies such as model
transformation implemented in the Eclipse Modeling Framework8. This
ensures to limit specific code to the minimum and to be able to maintain the
standard in the future.

(2) Define MicroConcept based on OWL 2 meta-model. In this case, our standard
represents a meta-ontology which can be instantiated by business ontology
taking the benefits from all the logic of the standard and from all the tools
developed around this language: parsers, inference engines (e.g. Pellet9),
programmatic environment (such as Jena10 or OWL API11) and repositories.
Extensions proposed in our standards (in particular Action) are addressed by
the rule engine and by a set of rules not editable by users, given a way to
easily maintain the standard and be able to make some evolution. Closed-
World-Assumption is addressed by the specific architecture of the core of the
application (Cf. subsection 5.4).

4.4 Illustrative examples

We give here Micro-Concepts and rules for the illustrative use-case presented in
section 3.3. Full specifications of these languages will be published later on the
project website12.

4.4.1 Micro-Concepts

The following Micro-Concepts are defined:
• Train
• Engine
• Wagon
• Station
• Camera

8 http://www.eclipse.org/modeling/emf/
9 http://clarkparsia.com/pellet
10 http://jena.sourceforge.net/
11 http://owlapi.sourceforge.net/
12 http://www.sembysem.org

SEMbySEM: a Framework for Sensors Management 9

• Light

4.4.2 Properties

The following Properties are defined:
• speed: relation possessed by a Train or an Engine with a decimal value.
• serialNumber: relation possessed by an Engine or a Wagon with a string

value.
• trainNumber : relation possessed by a Train with an integer value.
• hasEngine: relation possessed by a Train with a value that is an instance of

Engine.
• hasWagon: relation possessed by a Train with values that are instances of

Wagon.
• inPlatform : relation possessed by a Train with a value that is an instance of

the Platform.
• hasLight: relation possessed by a Platform with values that are instances of

Lights.
• hasCamera: relation possessed by a Platform with values that are instances

of Camera.

4.4.3 Actions

The following Actions are defined:
• Engine has 'Start' and 'Stop' actions.
• Camera has a 'Focus_on_platform' action. This action has a parameter

'to_platform ' taking an instance of 'Platform ' as parameter.
• Light has 'Switch_On' and 'Switch_Off' actions.

4.4.4 Rules

Rules can be defined directly on top of MicroConcepts. We give as example the
expression of the rule "If a train arrives at a given platform, turn the camera to that
platform and switch on all the lights on this platform". This rule used the proposed
rule serialization.

rule "TrainInPlatform"
if
{
// If a train arrives at a given platform
?t := Train (?tPlatform := inPlatform, ?cams := one(hasCamera), ?lights :=
one(hasLight))
}
then
{

10 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

// Then turn the camera to the given platform
?CameraFocusAction := createAction(?cams, Camera/Focus_on_platform);
?CameraFocusAction->to_platform := ?tPlatform;
execute(?CameraFocusAction);

//Then switch on the lights of this platform
excecute(?lights, Light/Switch_On);

}

5 SEMbySEM general architecture

Let us consider an existing set of communicating objects or elements, constituting
what from now we will call indifferently a universe or a managed system. This
universe will be monitored with sensors dispatched on several fixed locations and on
some moving objects. The deployment and operational use of a management system
for this universe will be done in two phases, design time and runtime. Design time
operations will encompass the detailed definition of all the sensors which can
contribute to the universe, the ontology of the universe including all the existing and
required concepts related to the universe sensors and their associated business rules,
and the viewpoints of each stakeholder including a display HMI. Runtime will be the
operational use of the management system controlling this universe.

5.1 Design time

The design is intended to be done by expert users in the domain, assisted by
ontology designers, rules designers and sensors communications designers.

Firstly, the ontology definition concerns the mandatory concepts defining and
operating the universe, including first the objects that are managed and on which
sensors acquire data, objects composed from several elementary objects and abstract
objects that correspond to business concepts. The associated rules to permanently
update the ontology are a whole part of the universe dynamic model. The ontology
must also support the actions defined on the concepts and linked to actuators on the
real managed objects.

The sensors definition includes all the sensors that can be encountered within the
universe from an operational point of view, meaning the communication protocols to
access them, the type of communication they support, the kind of message they
deliver, the potential actions on the managed objects, the operational flow rate of data,
an identifier to the associated concepts in the ontology, etc.

The stakeholders’ viewpoints definition includes all the graphic data (icons,
widgets, buttons, etc.) and the links to the related semantic data (in the ontology).
These two features are grouped in several HMI models, each model containing one or
several different views. Each model corresponds to a set of End-users and will present
only pertinent information for this set of users.

SEMbySEM: a Framework for Sensors Management 11

5.2 Runtime

During runtime the dynamicity of the managed system is very important. The fixed

and mobile sensors emit messages when an event occurs or when they are scheduled
for it, while End-users connect and disconnect through their interfaces, act on the
managed objects or on virtual objects in the semantic model. Each event from sensors
is registered and processed in order to update the semantic model through direct
modification and modifications triggered by the business rules. The display of the
connected End-users must be updated accordingly when the semantic model updates
are pertinent for them. Each action from an End-user or from rules is processed
internally and sent to the right managed object when necessary.

5.3 Overall architecture

The architecture we have retained to address these issues is composed of three

layers: the Façade layer, the Core layer and the Visualisation layer. The Façade layer
is the interface with sensors and the Visualisation layer is the interface with End-
users. The Core layer contains the semantic model.

The goal of the Façade layer is to be the interface between the sensors and the
semantic model. All the technical diversity concerning protocols, communication
matters, sensor types and so on is addressed in this layer. The Façade transforms
heterogeneous messages and events from sensors to standardized messages addressed
to one or several concepts transmitted to the Core layer. The Façade also transforms
actions messages from the Core to the actuators.

The Core processes the events from the Façade in order to maintain an up-to-date
semantic model of the universe. For this the arrival of a message from the Façade
triggers a short process: identification of the concept instance related to the message
or creation of this instance if it does not exist, consistency validation of the update
with regards to the model requirements and update of the semantic model.
Afterwards, the rule engine is called, taking as input the successful model changes
and processing until no rule is left to trigger. The second main task of the core layer is
to send the pertinent semantic data to the Visualisation layer. Each time an End-user
connects to the system, the Core layer is notified of the semantic concepts instances
requiring data display. Then each time these instances are updated the data is also sent
to the Visualisation layer until the End-user disconnects.

The Visualisation layer aims at displaying to the End-users the pertinent
information they require to perform their task. Therefore each End-user has access to
tailored viewpoints, designed by expert users and HMI experts and displaying data
from the semantic model. This information is continuously updated each time an
event occurs. The End-users may also perform actions on the instances of the
semantic model through their HMI. The Visualisation layer performs several tasks: it
gets all the semantic data that is of interest for the End-user and links it to graphical
components for display, according to HMI models.

12 J-S. Brunner, J-

5.4 Architecture of the

In the two implementation strategies
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use

First, a Constraint Checking module is responsible for consistency checks similarly
to DB-style constraints [
Closed-World-Assumption, it is applied, in particular, on Cardinality (e.g. if a
property has a MaxCardinality
Property.

Secondly a reasoner is responsible to apply the general logic of the MicroConcept
model. This module expands the asserted data with inferred data resulting of
classification, use of property composition, symmetric, inve

-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

Fig. 1. Overall SEMbySEM architecture

Architecture of the semantic processing layer

In the two implementation strategies described at section 4.3, the embedded logic is
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use three levels to process the logic of our model.

First, a Constraint Checking module is responsible for consistency checks similarly
style constraints [10]. This module ensures the consistency of the model in the

Assumption, it is applied, in particular, on Cardinality (e.g. if a
MaxCardinality of 1 and has already one value), and Functional

Secondly a reasoner is responsible to apply the general logic of the MicroConcept
model. This module expands the asserted data with inferred data resulting of
classification, use of property composition, symmetric, inverse property, etc.

, the embedded logic is
not exactly the same as OWL, especially regarding the concept of Closed-World-

three levels to process the logic of our model.
First, a Constraint Checking module is responsible for consistency checks similarly

]. This module ensures the consistency of the model in the
Assumption, it is applied, in particular, on Cardinality (e.g. if a

ne value), and Functional

Secondly a reasoner is responsible to apply the general logic of the MicroConcept
model. This module expands the asserted data with inferred data resulting of

rse property, etc.

SEMbySEM: a Framework for Sensors Management 13

Finally, a rule engine based on RETE algorithm, applies the additional business
logic defined by the business user.

Additionally, a query engine is responsible to handle queries received from the
visualization layer. It interprets the query and answer according to the logic of the
model (already inferred by the 3 previously described modules since we use forward
chaining inference).

The model itself benefit from the advantage of the chosen implementation strategy.
In particular memory, disk representation, serialization and persistency use state-of-
the-art standards to provide a powerful and maintainable solution.

Fig. 2. Core layer general architecture

6 Current status of the project

At the time of the redaction of this paper, the SEMbySEM project is still in its first
year. Architectural choices had been done as well as functional and technical
specification of most parts of the framework. The MicroConcept standard was drafted
and will be checked against the use-cases before release.

The project starts now its development phase. First results and evaluations are
expected at the end of this year.

In order to foster SEMbySEM standard and framework, an open-source version of
the framework will be released in early 2010. Standards and framework will be
available on the official website of the project (http://www.sembysem.org) where
additional information will be added progressively.

Rule
Engine

Reasoner

Query engine

Constraint Checking

Model

Rules

Data

S
em

an
tic

 M
o

d
el

Visualisation Layer

Façade Layer

14 J-S. Brunner, J-F. Goudou, P. Gatellier, J. Beck, C-E. Laporte

7 Conclusion and future work

We have presented here the whole idea of the SEMbySEM project aiming at the
creation of a semantic infrastructure for service management. The main idea is to use
a business-driven standard called MicroConcept to define the semantic model linked
to sensors and manageable objects. MicroConcept was designed according to business
needs but will be implemented with respect to state-of-the-art standards in order to
provide both the expressivity required to model the use-case and the scalability to
implement them. Additionally, a production rule engine supports the business logic in
order to minimize specific developments.

In upstream of this core system, sensors and manageable objects low-level
communications are transformed by the Façade layer to feed the semantic model.

In downstream, users can access to the system through a visualisation layer
performing queries to the semantic model and supporting actions from users to the
system.

This architecture enables a powerful framework able to answer to a large variety of
use-cases. The implementation phase is starting and will helps to validate all the
architecture presented in this paper.

8 Acknowledgements

This work is carried out by the EUREKA ITEA2 project SEMbySEM partly funded
by French, Spanish, Finnish and Turkish governments. Furthermore we want to thank
all partners and contributors to this project.

9 References

1. Sheth A., Henson C., Sahoo, S., "Semantic Sensor Web," IEEE Internet
Computing, vol. 12, no. 4, pp. 78-83, July/Aug. 2008, doi:10.1109/MIC.2008.87

2. Huang, V. and Javed, M. K. 2008. Semantic Sensor Information Description and
Processing. In Proceedings of the 2008 Second international Conference on Sensor
Technologies and Applications - Volume 00 (August 25 - 31, 2008).
SENSORCOMM.

3. Imai, M.; Hirota, Y.; Satake, S.; Kawashima, H., "Semantic Sensor Network for
Physically Grounded Applications," Control, Automation, Robotics and Vision,
2006. ICARCV '06. 9th International Conference on , vol., no., pp.1-6, 5-8 Dec.
2006

4. Smith M.K., Welty C. and McGuinness D.L. OWL web ontology language guide.
W3C recommendation, Feb 2004

5. Brickley, D. and Guha, R.V. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation, Feb 2004.

6. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C
Member Submission, 21 May 2007.

SEMbySEM: a Framework for Sensors Management 15

7. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. W3C
Recommendation, 2007.

8. Martin, D. et al.: OWL-S: Semantic markup for web services. W3C Member
Submission, 2004.

9. OMG PRR (Production Rule Representation), Beta 1, OMG Adopted
Specification, November 2007. http://www.omg.org/spec/PRR/1.0/

10. Motik, B., Horrocks, I. and Sattler, U. Bridging the gap between OWL and
relational databases, Conference on World Wide Web, 2007.

11. Brunner, J-S., Ma, L., Wang, C., Zhang, L., Wolfson, D. C., Pan, Y., and
Srinivas, K. 2007. Explorations in the use of semantic web technologies for
product information management. Conference on World Wide Web, 2007.

12. Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, OWL 2 Web Ontology
Language:Structural Specification and Functional-Style Syntax. W3C Working
Draft, 02 December 2008, http://www.w3.org/TR/2008/WD-owl2-syntax-
20081202/. Latest version available at http://www.w3.org/TR/owl2-syntax/.

13. Grosof, B., Horrocks, I., Voltz, R. and Decker, S., Description Logic
Programs: Combining Logic Programs with Description Logic. WWW, 2003.

14. Forgy, C., Rete: A Fast Algorithm for the Many Pattern/Many Object, 1980
15. Meta Object Facility (MOF) 2.0, OMG Document: formal/2006-01-01,

http://www.omg.org/cgibin/doc?formal/2006-01-01
16. I. Horrocks, P.F. Patel-Schneider, S. Bechhofer, D. Tsarkov, OWL Rules: A

Proposal and Prototype Implementation, J. Web Semantics 3 (2005) 23-40.

